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Abstract Despite the fact that the mathematical basis for rhumb lines on the ellipsoidal Earth
is well known, the Earth’s oblateness is usually neglected in dead-reckoning sailing calculations.
This leads to significant errors in the estimated position of a vessel over one day’s sailing. This
paper provides simple formulas that include the Earth’s oblateness, which can be readily applied
to sailing calculations. The accuracy of these formulas is assessed, and they are shown to be good
to about 10 m over ranges up to 1000 km.
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Introduction

The formulas for determining a ship’s dead-reckoned position, given an initial known location, the vessel’s
course and speed, and the time elapsed, are referred to as the sailing formulas. These formulas are based on
the assumption that the vessel is sailing a rhumb line, or loxodrome; that is, the vessel’s track maintains a
constant azimuth. Loxodromes must be distinguished from geodesics—the shortest path between two points
across the Earth. Geodesics have important applications in geodesy, electromagnetic propagation (e.g., for
LORAN), and air-route optimization, and a great deal of work has gone into accurate algorithms for their
computation. Loxodromes have received less attention because they are normally used only over relatively
short distances, and their navigational applications do not require extremely high accuracy.

Geodesics and loxodromes share the characteristic that if the Earth were a sphere, relatively simple,
closed-form formulas would solve each of the problems. The Earth’s true shape approximates an oblate
spheroid. Since the Earth’s flattening, f , is only about 1/300, the spherical-Earth approximation suffices for
many low-precision applications. In the American Practical Navigator [1] (hereafter referred to as Bowditch)
we find the statement that “for many navigational purposes, the earth is assumed to be a sphere, without
intolerable error.” The error in geodetic coordinates resulting from neglect of the Earth’s oblateness is of
order fd, where d is the distance from the initial point. This amounts to several kilometers over a distance
of a thousand kilometers (approximately one-day’s sailing), which is likely to be much smaller than errors
due to effects such as current and wind. Figure 1 shows the growth in this error as a function of distance,
from a starting point at latitude 45◦S.

Despite the uncertainties in dead-reckoning from unpredictable influences, it seems unwise to add to
the problem by ignoring a known effect which can be accurately accounted for. The effect of the Earth’s
oblateness on rhumb-line sailing calculations has been addressed—although infrequently–in the literature.
An accurate formula for longitude, taking into account the Earth’s oblateness, was published over a century
ago [2]. The equation for longitude (as a function of latitude) is closely related to the problem of Mercator
map projection [3]. Five decades ago, a scheme for applying mid-latitude formulas and “meridional parts”
tables to rhumb lines on the oblate Earth was derived [4]. Formulas for distances along rhumb-line tracks,
which take the Earth’s oblateness into account, are available [5], and tables for latitude, longitude, and
distance along a rhumb line on the ellipsoidal Earth have been published [6]. It has been suggested [7]
that a table of “latitude parts” be used to deal with the oblateness effect on latitude. Other modifications
to the sailing formulas have been proposed [8]. On a more fundamental level, a succinct account of the
mathematical basis of loxodromic curves has recently been published [9].

Yet, none of these references provides a complete, convenient solution to the problem of sailing formulas
for an oblate Earth. Some present a mathematical theory that is not straightforward to apply. Others
approach rhumb-line sailing calculations from a very traditional point of view, which includes calculations of
mid-latitudes or meridional parts—an obsolete and unnecessary approach given modern computing power.
However, the primary deficiency is the lack of a closed-form latitude formula that takes into account the
Earth’s oblateness.
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Therefore, someone who has to perform or program navigational calculations is still confronted with
a confusing choice of algorithms (such as plane sailing, mid-latitude sailing, and Mercator sailing) none of
which is entirely satisfactory. Some of these issues were discussed almost 40 years ago [10] and have yet to
be resolved. As a result, in the treatment of the sailing calculations in Bowditch, the Earth’s oblateness
is taken into account (to 6th order!) only in Table 5 of meridional parts. Someone who needs accurate
sailing formulas could use the formula on which Table 5 is based, but that solves only the longitude half of
the problem. That formula (and Table 5) requires pre-computed latitude values, and the latitude formulas
in Bowditch have no oblateness terms at all. So the potential accuracy of the longitude calculation is not
realized in practice.

In this paper, I address the problem of rhumb-line sailing formulas from the beginning. The next
section provides some fundamental relations from geodesy and casts the problem as the solution to a pair
of differential equations. Then I solve these equations for the case of the spherical Earth. Up to this point
the developments are conventional, and well-known exact solutions are obtained. In the fourth section of
the paper I solve the differential equations for the more difficult case of an oblate Earth and obtain two new
formulas that directly yield, respectively, the latitude and longitude of a vessel as a function of time. I also
describe how to assess the accuracy of these, or other, sailing formulas, and I make recommendations on the
best formulas to use. Although the paper’s primary original contribution is a closed-form sailing formula for
latitude that includes the Earth’s oblateness, I have attempted a straightforward presentation of the entire
problem that is intended to serve those who must perform real-world navigational calculations.

Throughout the development, the accuracy sought is such that, over a day’s sailing, the error in computed
position will not exceed the dimensions of a typical vessel or the uncertainty of a typical GPS fix. Expressed
quantitatively, this amounts to an accuracy of a few tens of meters (about an arcsecond) over a distance of
about 1000 km (= 640 nmi = 22.5 kn × 24 h). That is a relative accuracy of a few × 10−5, so the Earth’s
oblateness must be accounted for to about 1%. This is a fairly modest requirement and very elementary
mathematics can be applied to it.

Statement of the Problem

Over a small area on the surface of the Earth, the following relations hold for a track of infinitesimal
length dl, expressed in kilometers, which is at latitude φ with azimuth C (the latter measured eastward from
north):

dφ =
cosC
M

dl

dλ =
sinC
N cosφ

dl

(1)

Here, dφ and dλ are infinitesimal differences of geodetic latitude, φ, and longitude, λ, respectively, in radians,
corresponding to dl. The quantities M and N are the radii of curvature of the Earth’s surface in the meridian
and the prime vertical, respectively, in kilometers. (The prime vertical is a plane containing the normal to
the Earth’s surface at the location of interest, perpendicular to the local meridian.) The above equations,
along with discussions of radii of curvature, can be found in most texts on geodesy (e.g., [11]). The curvatures
M and N are computed from the Earth’s equatorial radius, a, in kilometers, and eccentricity of the Earth’s
ellipsoid, e:

M =
a(1− e2)

(1− e2 sin2 φ)3/2

N =
a

(1− e2 sin2 φ)1/2

(2)

Here, e is related to the Earth’s flattening, f , by e2 = 2f − f2 (in geodesy texts, e is referred to as the “first
eccentricity”). The WGS-84 values are a = 6378.137 km and f = 1/298.257223563.
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Equations (1) can be used to describe a vessel’s motion along a rhumb line if we set dl = Sdt, where
S is the vessel’s speed and dt is an infinitesimal increment of time, t. For rhumb lines, the azimuth C is a
constant. Equations (1) can then be re-cast as:

dφ

dt
= S · cosC

M(φ(t))

dλ

dt
= S · sinC

N(φ(t)) cosφ(t)

(3)

where the dependence of M and N on latitude, and the dependence of latitude on time are indicated. Time,
t, is expressed in hours, and the vessel’s speed, S, is expressed in kilometers per hour (1 kn = 1.852 km/h
exactly, using the International Nautical Mile). The angle C now represents the vessel’s constant course. I
have used metric units for distance and speed to avoid confusion between nautical miles and arcminutes; on
an oblate Earth, nautical miles and arcminutes do not, in general, correspond.

Equations (3) are a simple example of a system of ordinary differential equations. The problem at hand
is to find their solution, which will yield the latitude and longitude of the vessel as a function of time. The
only boundary condition is that at t = 0, the vessel is at known position (φ0, λ0). The equations are coupled,
but, fortunately, the coupling is only one-way: although φ appears in the equation for λ, λ does not appear
in the equation for φ. This makes the solution of these equations much more tractable, since we can address
the equation for φ first, separately, and can then apply its solution to the solution of the equation for λ.

The solutions to the differential equations (3) can be represented as integrals:

φ = φ0 + S cosC
∫

dt

M(φ(t))

λ = λ0 + S sinC
∫

dt

N(φ(t)) cosφ(t)

(4)

where the limits of integration in both cases run from 0 to t, and φ0 and λ0 represent the vessel’s initial
(t=0) latitude and longitude. (Formally, the limits of integration run from t=0 to t=T , where T represents
the elapsed time in hours from t=0; but since there is no real distinction between t and T , we can replace
T with t after the integral is evaluated.) The remainder of this paper is devoted to the evaluation of these
two equations.

Special Solution—Spherical Earth

Before considering the general solution of equations (3), let us take up the special case of a spherical
Earth. For a spherical Earth, the flattening, f , and eccentricity, e, are zero and M = N = a, a constant.
Equations (3) then reduce to:

dφ

dt
=
S

a
cosC

dλ

dt
=

S

a cosφ
sinC

(5)

and equations (4) become, for this case:

φ = φ0 +
S

a
cosC

∫
dt

λ = λ0 +
S

a
sinC

∫
dt

cosφ

(6)
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Using the first equation in (5), we can change the integration variable in the longitude equation from dt to
dφ:

λ = λ0 +
sinC
cosC

∫
dφ

cosφ
= λ0 + tanC

∫
secφdφ (7)

where we are integrating over the latitude traversed from time 0 to t. Now both the latitude and longitude
integrals can be easily evaluated. The solutions are:

φ = φ0 +
S t

a
cosC

λ = λ0 + tanC
(

ln
[
tan

(
π

4
+
φ

2

)]
− ln

[
tan

(
π

4
+
φ0

2

)]) (8)

where t is the time elapsed, in hours, since the vessel left its initial position (φ0, λ0). All angles are in radians.
In the equation for λ above, the ln[tan(π/4 +φ/2)] terms are the basis for the tables of meridional parts for
a spherical Earth.

Obviously, the equation for λ has an indeterminacy for east-west courses. For east-west courses, or
courses that are very nearly so, the following equation for λ can be used:

λ = λ0 +
S t

a cosφ0
sinC (9)

This equation is based on the condition that, for these courses, the latitude φ never departs significantly
from φ0. When the course is exactly east-west, | sinC| = 1, φ = φ0, and equation (9) is exact.

General Solution—Oblate Earth

In the more general case, equations (3) do not have exact closed-form analytic solutions. Various
approximate solutions are, however, possible.

Equations (3) can be solved numerically. A numerical integration can be performed to evaluate the inte-
grals in (4). Obviously the longitude integral must be simultaneously evaluated with the latitude integral, so
that a current value for φ is available at each step. (The latitude integral could be evaluated by itself.) This
is actually a fairly simple procedure. For example, FORTRAN code of about 50 statements will perform a
simple predictor-corrector integration on both equations. If the computations are done in double-precision
arithmetic, step sizes such that S dt is a few kilometers result in numerical errors of a few meters or less
after integrations of a thousand kilometers. The numerical error can be tested by simple forward-backward
integration tests. Since this procedure provides a nearly exact solution (more sophisticated numerical in-
tegrators could be applied to the problem if more accuracy was required) and is readily implemented on
even PC-class computers, we could declare the problem solved. However, closed-form analytic formulas are
more convenient, and they facilitate applications in which the sensitivity of the formulation to any of its
parameters must be evaluated.

Since the Earth’s oblateness is small, series expansions in oblateness converge rapidly and allow a point
of attack. As a first step, we can expand M−1 and N−1:

M−1 =
1

a(1− e2)
(1− 3

2e
2 sin2 φ+ · · · )

N−1 =
1
a

(1− 1
2e

2 sin2 φ+ · · · )
(10)

The omitted high-order terms in the above expansions are not negligible for high-precision geodesy but, as
we shall see, the truncated series is adequate for our accuracy requirements.
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Now we can substitute the above expression for M−1 into the basic equation for latitude, from equa-
tions (4):

φ = φ0 +
S cosC
a(1− e2)

∫ (
1− 3

2e
2 sin2 φ(t)

)
dt (11)

To perform the integration, we need to know φ as a function of t which, unfortunately, is the function we
are seeking. However, note that φ(t) contributes only weakly to the integrand, since e2 � 1. That means
that a reasonably good approximation to φ(t), denoted φ′(t), might allow us to proceed (the prime does not
imply differentiation). One such approximation, similar to the first of equations (8), is:

φ′(t) = φ0 +
S t cosC
M0

with dφ′ =
S cosC
M0

dt

(12)

where M0 = M(φ0) is the radius of curvature of the Earth’s surface in the meridian at the initial latitude.
Substituting these relations into equation (11),

φ = φ0 +
S cosC
a(1− e2)

M0

S cosC

∫ (
1− 3

2e
2 sin2 φ′

)
dφ′

= φ0 +
M0

a(1− e2)

∫ (
1− 3

2e
2 sin2 φ′

)
dφ′

= φ0 +
M0

a(1− e2)

[
φ′ − 3

2
e2
(
φ′

2
− 1

4
sin 2φ′

)]φ′(t)

φ′(0)

Since φ′(0) = φ0, the equation for latitude as a function of time becomes

φ = φ0 +
M0

a(1− e2)

[(
1− 3

4
e2
)
(φ′ − φ0) +

3
8
e2(sin 2φ′ − sin 2φ0)

]

where φ′ = φ0 +
S t cosC
M0

M0 =
a(1− e2)

(1− e2 sin2 φ0)3/2

(13)

All angles are in radians, all distances are in kilometers, and the time interval, t, is in hours. The vessel’s
speed, S, is expressed in km/h = kn × 1.852.

We can obtain the equation for longitude through a similar development, using the expansion for N−1

from equations (10). Again, the integral is straightforward and the result is:

λ = λ0 +
M0

a
tanC

[
(1− 1

2e
2)
(

ln
[
tan

(
π

4
+
φ′

2

)]
− ln

[
tan

(
π

4
+
φ0

2

)])
+ 1

2e
2(sinφ′ − sinφ0)

] (14)

where φ′ and M0 have the same meanings as in equations (13).

Equations (13) and (14) are new and, as we shall see later, both meet our accuracy requirements.
However, there is a better formula for λ. The approach is given in [3] and [6]. If we return to the original
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equation for λ, equation (4), we can change the variable of integration from dt to dφ (just as we did in the
spherical-Earth case) by using the relation dφ = ScosC dt/M from equations (3). Then we have

λ = λ0 + tanC
∫

M(φ)dφ
N(φ) cosφ

= λ0 + tanC
∫

(1− e2)dφ
(1− e2 sin2 φ) cosφ

(15)

The latter integral occurs in the construction of Mercator projection maps (not surprisingly) and its evalu-
ation is detailed in [12], pp. 113–114:

λ = λ0 + tanC

(
ln
[
tan

(
π

4
+
φ

2

)]
+
e

2
ln
[

1− e sinφ
1 + e sinφ

]

− ln
[
tan

(
π

4
+
φ0

2

)]
− e

2
ln
[

1− e sinφ0

1 + e sinφ0

]) (16)

Thus to use equation (16) for longitude, we must first evaluate equation (13) for the latitude, φ.

Note that if the Earth were a sphere, e would be zero and M0 = a, so equations (13), (14), and (16)
reduce to the spherical-Earth equations (8).

Just as in the spherical-Earth case, the longitude equations (14) or (16) are indeterminate for east-west
courses. For those courses, or ones very close to east-west, the following equations can be used:

φ = φ′

λ = λ0 +
S t sinC

N0 cos
(

1
2 (φ0 + φ′)

)
where N0 =

a

(1− e2 sin2 φ0)1/2

(17)

and where φ′ is from (13) (in this case it will not be much different from φ0). Here, N0 = N(φ0) is the radius
of curvature of the Earth’s surface in the prime vertical at the initial latitude. These formulas can be used
for courses C within about a half-degree (0.01 radian) of 90◦ or 270◦, or when the excursion in latitude will
not exceed a few tens of kilometers.

Obviously all of the latitude and longitude formulas in this section become indeterminate very close to
the poles. However, rhumb lines are not used for polar navigation.

Accuracy of the Formulas

Equation (13) for latitude and equation (16) for longitude were compared with two formulas found in
the literature. Bowditch does not contain a formula for latitude adequate for this exercise. A formula from
[5], which is transcendental in latitude, was adapted to the purpose by solving for the latitude iteratively.
(Neither [6], [7], nor [9] contain closed-form formulas for latitude.) Once accurate latitudes were obtained,
the longitude formula from Bowditch for “Mercator sailing” could be used (the formula is given in the
explanation to Table 5). An adjustment also had to be made for the fact that both [5] and Bowditch use
nautical miles and arcminutes (along the equator) interchangeably, which does not conform to the definition
of the International Nautical Mile used in this paper.

Once all that was done, the comparison between the previously-published formulas and equations (13)
and (16) from this paper was quite satisfactory. For example, for rhumb lines starting at a latitude of 40◦
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and extending to 1000 km along a variety of courses, the total difference was less than 6 m (0.2 arcsec).
Even at a starting latitude of 60◦, differences in position reached only about 10 m (0.3 arcsec) at 1000 km
from the starting point. These tests also showed that the differences were almost entirely due to the latitude
equation. Since longitude is evaluated as a function of latitude, the difference in latitude is propagated into
longitude. The longitude formulas, taken by themselves (that is, with the same latitudes as input), were
found to be equivalent to a high degree of accuracy—less than a centimeter difference over the rhumb lines
tested.

Another way to evaluate the error in the formulas for latitude and longitude is to compare their results
with the results of the numerical integration described at the beginning of the previous section. Figures 2, 3,
and 4 show, respectively, the total error in position, as a function of position relative to the starting point,
for several formula combinations given in this paper. The total error in position is the length of the vector
connecting the position computed from the formulas to the “true position” from the numerical integration.
In each figure, the XY-plane represents an area on the Earth’s surface, and the error in position at each point
in the XY-plane is represented by the Z height of the function surface shown. The starting point (φ0, λ0) is
located at the center of the XY-plane (the error surface always touches it, since the error is zero there). Error
surfaces for starting points at latitude 25◦N and 50◦N are shown for each formula combination. Figure 2
shows the error resulting from the use of equations (13) and (14); Figure 3 shows the error resulting from the
use of equations (13) and (16); and Figure 4 shows the error resulting from the use of equations (17). Despite
the apparent continuity of the surfaces, courses that were exactly east-west were avoided in the calculations
so that the degeneracy near C = 90◦ or 270◦ in equations (14) and (16) was not encountered.

There are several things to note about these figures. Each error surface is east-west symmetric and
is not a function of the longitude of the starting point. The error surfaces for the corresponding southern
latitudes are simply north-south reflections of the surfaces shown. The equations (13)-(16) combination is
clearly superior to the (13)-(14) combination. Equations (17) are obviously not suitable for general use, but
they do have a corridor a few tens of kilometers wide along an east-west line in which they are actually quite
good. Thus they are appropriate for the east-west courses which cause the indeterminacy in equations (14)
and (16). For the equations (13)-(14) combination, as well as the (13)-(16) combination, along each course,
the error increases approximately linearly with distance from the starting point (a contour plot would show
this more obviously). The rate of increase of error with distance becomes steeper at higher latitudes.

An algorithm defined by equations (13) and (16) for non-east-west courses and equations (17) for east-
west courses is recommended. “East-west courses” are defined for this purpose as those with a latitude
excursion of less than 15 km. This algorithm results in errors of 10 m (0.3 arcsec) or less for 1000 km rhumb
lines starting within the three-quarters of the Earth’s surface that is within 50◦ of the equator. Even for
1500 km rhumb lines starting at a latitude of 70◦, the maximum error is still only about 30 m (1 arcsec).
The error surface for this algorithm is shown in Figure 5 for a starting point at latitude 45◦S; compare it to
Figure 1, where the oblateness of the Earth is neglected entirely, but notice that the Z scale in Figure 5 is
only 1/100 that of Figure 1.

Conclusion

The oblateness of the Earth should be accounted for in the sailing formulas for both latitude and
longitude. Relatively simple, closed-form formulas have been presented which include the Earth’s oblateness
and which have good accuracy for navigational applications. Equation (13) for latitude, which is new, and
equation (16) for longitude are recommended for computing the dead-reckoned position of a vessel sailing
a rhumb line, provided the course is not east-west. For east-west courses, or those very close to east-west,
the much simpler equations (17) can be used. Over most of the surface of the Earth, these formulas provide
positions to an accuracy of about 10 m (0.3 arcsec) or better for rhumb lines extending to 1000 km; only at
high latitudes are the errors larger, and then only by small factors. This accuracy is such that, over a day’s
sailing, the error in the dead-reckoned position contributed by these formulas will be less than the linear
dimensions of a typical vessel or the uncertainty of a typical GPS fix.
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Figure 1 Total error in position as a function of position, resulting from neglect of the
Earth’s oblateness in the sailing formulas. The starting point for the calculations, 45◦S, is at
the center of the XY-plane, and for this calculation, the spherical Earth was given a radius
equal to the Gaussian mean radius (=

√
MN) at that latitude.



Figure 2(a) Total error in position as a function of position, resulting from the use of
equations (13) and (14) as sailing formulas. The starting point for the calculations, 25◦N, is
at the center of the XY-plane.



Figure 2(b) Same as Figure 2(a), but with the starting point at latitude 50◦N. The error
surface has been truncated at the top in the far northeast and northwest corners.



Figure 3(a) Similar to Figure 2(a), but the error shown results from the use of equations
(13) and (16). The starting point is at latitude 25◦N.



Figure 3(b) Same as Figure 3(a), but with the starting point at latitude 50◦N.



Figure 4(a) Similar to Figure 2(a), but the error shown results from the use of equations
(17). The error surface has been truncated at the top so only errors less than 50 m are
correctly indicated. The starting point is at latitude 25◦N.



Figure 4(b) Same as Figure 4(a), but with the starting point at latitude 50◦N.



Figure 5 Total error in position as a function of position, resulting from the use of the
recommeded sailing algorithm. The algorithm incorporates equations (13) and (16) for non-
east-west courses and equations (17) for east-west courses, and the starting point for the
calculations, 45◦S, is at the center of the XY plane.


