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Abstract

While the seismic quality factor and phase lag are defined solely by the bulk proper-
ties of the mantle, their tidal counterparts are determined both by the bulk properties
and the size effect (self-gravitation of a body as a whole). For a qualitative estimate, we
model the body with a homogeneous sphere, and express the tidal phase lag through
the lag in a sample of material. Although simplistic, our model is sufficient to under-
stand that the lags are not identical. The difference emerges because self-gravitation
pulls the tidal bulge down. At low frequencies, this reduces strain and the damping
rate, and makes tidal damping less efficient in larger objects. At higher frequencies,
competition between self-gravitation and rheology becomes more complex, though for
sufficiently large superearths the same rule applies: the larger the planet, the weaker
tidal dissipation in it. Being negligible for small terrestrial planets and moons, the
difference between the seismic and tidal lagging (and likewise between the seismic and
tidal damping) becomes very considerable for large exoplanets (superearths). In those,
it is much lower than what one might expect from using a seismic quality factor.

The tidal damping rate deviates from the seismic damping rate especially in the
zero-frequency limit, and this difference takes place for bodies of any size. So the
equal in magnitude but opposite in sign tidal torques, exerted on one another by the
primary and the secondary, have their orbital averages going smoothly through zero as
the secondary crosses the synchronous orbit.

We describe the mantle rheology with the Andrade model, allowing it to lean toward
the Maxwell model at the lowest frequencies. To implement this additional flexibility,
we reformulate the Andrade model by endowing it with a free parameter ζ which is the
ratio of the anelastic timescale to the viscoelastic Maxwell time of the mantle. Some
uncertainty in this parameter’s frequency dependence does not influence our principal
conclusions.

1 The goal and the plan

As the research on exoplanetary systems is gaining momentum, more and more accurate
theoretical tools of planetary dynamics come into demand. Among those tools are the
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methods of calculation of tidal evolution of both orbital and rotational motion of planets
and their moons. Such calculations involve two kind of integral parameters of celestial bodies
– the Love numbers and the tidal quality factors. The values of these parameters depend
upon the rheology of a body, as well as its size, temperature, and the tidal frequency.

It has recently become almost conventional in the literature to assume that the tidal
quality factor of superearths should be of the order of one hundred to several hundred
(Carter et al. 2011, Léger et al. 2009). Although an acceptable estimate for the seismic Q ,
this range of numbers turns out to fall short, sometimes by orders of magnitude, of the tidal
Q of superearths.

In our paper, the frequency dependence of tidal damping in a near-spherical homogeneous
body is juxtaposed with the frequency dependence of damping in a sample of the material
of which the body consists. For brevity, damping in a sample will be termed (somewhat
broadly) as “seismic damping”.

We shall demonstrate that, while the tidal Q of the solid Earth happens not to deviate
much from the solid-Earth seismic Q , the situation with larger telluric bodies is considerably
different. The difference stems from the presence of self-gravitation, which suppresses the
tidal bulge and thereby acts as extra rigidity – a long-known circumstance often neglected in
astronomical studies.1 Due to self-gravitation (“size effect”), tidal damping in superearths
is much less efficient than in earths, and the difference may come to orders of magnitude, as
will be demonstrated below. Thus, while the seismic Q of a superearth may be comparable
to the seismic Q of the solid Earth, the tidal Q of a superearth may exceed this superearth’s
seismic Q greatly. This is the reason why it is inappropriate to approximate superearths’
tidal quality factors with that of the solid Earth.

We shall show that the difference between the frequency dependence of the tidal Q
factor and the seismic Q may explain the “improper” frequency dependence of the tidal
dissipation rate measured by the lunar laser ranging (LLR) method. We also shall point
out that the correct frequency dependence of the tidal dissipation rate, especially at low
frequencies, plays an important role in modeling the process of entrapment into spin-orbit
resonances. In greater detail, the latter circumstance will be discussed in Efroimsky (2011).

The rate of the “seismic damping” (a term that we employ to denote also damping in a
sample of the material) is defined, at each frequency, by the material’s rheology only, i.e., by
the constitutive equation linking the strain and stress at this frequency. The rate of the tidal
damping however is determined both by the rheology and by the intensity of self-gravitation
of the body. At a qualitative level, this can be illustrated by the presence of two terms, 1
and 19µ(∞)/(2ρgR) , in the denominator of the expression for the static Love number k2
of a homogeneous sphere. Here µ(∞) denotes the relaxed shear modulus, g signifies the
surface gravity, while ρ and R stand for the mean density and the radius of the body. The
first of these terms, 1 , is responsible for the size effect (self-gravitation), the second for the
bulk properties of the medium. Within the applicability realm of an important theorem
called elastic-viscoelastic analogy (also referred to as the correspondence principle), the same

1 Including the size effect via kl is common. Unfortunately, it is commonly assumed sufficient. This
treatment however is inconsistent in that it ignores the inseparable connection between the Love number
and the tidal quality factor (or the tidal phase lag). In reality, both the Love number and the sine of the
tidal lag should be derived from the rheology and geometry of the celestial body, and cannot be adjusted
separately from one another.
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expression interconnects the Fourier component k̄2(χ) of the time derivative of the Love
number with the Fourier component µ̄(χ) of the stress-relaxation function at frequency χ .
This renders the frequency-dependence of the tangent of the tidal lag, which is the negative
ratio of the imaginary and real parts of k̄2(χ) .

This preliminary consideration illustrates the way rheology enters the picture. First, the
constitutive equation defines the frequency dependence of the complex compliance, J̄(χ) ,
and of the complex rigidity µ̄(χ) = 1/J̄(χ) . The functional form of this dependence deter-
mines the frequency dependence of the complex Love number, k̄l(χ) . The latter furnishes
the frequency dependence of the products |k̄l(χ)| sin ǫl(χ) which enter the tidal theory.

In Section 2, we briefly recall the standard description of stress-strain relaxation and
dissipation in linear media. In Section 3, we describe a rheological model, which has proven
to be adequate to the experimental data on the mantle minerals and partial melts. The
goal of the subsequent sections will be to build the rheology into the theory of bodily tides,
and to compare a tidal response of a near-spherical body to a seismic response rendered by
the medium. Finally, several examples will be provided. Among these, will be the case of
the Moon, whose “improper” tidal-dissipation frequency-dependence finds an explanation
as soon as the difference between the seismic and tidal friction is brought to light. In the
closing section, we shall compare our results with those obtained by Goldreich (1963).

2 Formalism

Everywhere in this paper we shall take into consideration only the deviatoric stresses and
strains, thus neglecting compressibility.

2.1 Compliance and rigidity.

The standard linear formalism in the time domain

The value of strain in a material depends only on the present and past values taken by the
stress and not on the current rate of change of the stress. Hence the compliance operator Ĵ
mapping the stress σγν to the strain uγν must be just an integral operator, linear at small
deformations:

2 uγν(t) = Ĵ(t) σγν =

∫ t

−∞

J(t − t ′)
�

σγν (t ′) dt ′ , (1)

where t ′ < t , while overdot denotes d/dt ′ . The kernel J(t− t ′) is termed the compliance

function or the creep-response function.
Integration by parts renders:

2 uγν(t) = Ĵ(t) σγν = J(0) σγν(t) − J(∞) σγν(−∞) +

∫ t

−∞

�

J (t − t ′) σγν(t
′) dt ′ . (2)

As the load in the infinite past may be set zero, the term containing the relaxed compliance
J(∞) may be dropped. The unrelaxed compliance J(0) can be absorbed into the integral
if we agree that the elastic contribution enters the compliance function not as

J(t− t ′) = J(0) + viscous and hereditary terms , (3)
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but as

J(t− t ′) = J(0)Θ(t − t ′) + viscous and hereditary terms . (4)

The Heaviside step-function Θ(t − t ′) is set unity for t− t ′ ≥ 0 , and zero for t− t ′ < 0 ,
so its derivative is the delta-function δ(t − t ′) . Keeping this in mind, we reshape (2) into

2 uγν(t) = Ĵ(t) σγν =

∫ t

−∞

�

J (t− t ′) σγν(t
′) dt ′ , with J(t− t ′) containing J(0)Θ(t− t ′) . (5)

Inverse to the compliance operator

2 uγν = Ĵ σγν . (6)

is the rigidity operator

σγν = 2 µ̂ uγν . (7)

In the presence of viscosity, operator µ̂ is not integral but is integrodifferential, and thus
cannot be expressed as σγν(t) = 2

∫ t

−∞
µ̇(t − t ′) uγν(t

′) dt ′ . It can though be written as

σγν(t) = 2

∫ t

−∞

µ(t − t ′) u̇γν(t
′) dt ′ , (8)

if its kernel, the stress-relaxation function µ(t − t ′) , is imparted with a term 2 η δ(t −
t ′) , integration whereof renders the viscous portion of stress, 2 η u̇γν . The kernel also
incorporates an unrelaxed part µ(0)Θ(t− t ′) , whose integration furnishes the elastic portion
of the stress. The unrelaxed rigidity µ(0) is inverse to the unrelaxed compliance J(0) .

Each term in µ(t − t ′) , which is neither constant nor proportional to a delta function,
is responsible for hereditary reaction.

2.2 In the frequency domain

To Fourier-expand a real function, nonnegative frequencies are sufficient. Thus we write:

σγν(t) =

∫ ∞

0

σ̄γν(χ) e
iχt

dχ and uγν(t) =

∫ ∞

0

ūγν(χ) e
iχt

dχ , (9)

where the complex amplitudes are

σ̄γν(χ) = σγν(χ) eiϕσ(χ) , ūγν(χ) = uγν(χ) eiϕu(χ) , (10)

while the initial phases ϕσ(χ) and ϕu(χ) are set to render the real amplitudes σγν(χn)
and uγν(χn) non-negative. To ensure convergence, the frequency is, whenever necessary,
assumed to approach the real axis from below: Im(χ) → 0− .

With the same caveats, the complex compliance J̄(χ) is introduced as the Fourier image
of the time derivative of the creep-response function:

∫

∞

0

J̄(χ) eiχτdχ =
�

J (τ) . (11)
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The inverse expression,

J̄(χ) =

∫

∞

0

�

J (τ) e−iχτ dτ , (12)

is often written down as

J̄(χ) = J(0) + i χ

∫

∞

0

[ J(τ) − J(0)Θ(τ) ] e−iχτ dτ . (13)

For causality reasons, the integration over τ spans the interval [ 0,∞ ) only. Alternatively,
we can accept the convention that each term in the creep-response function is accompanied
with the Heaviside step function.

Insertion of the Fourier integrals (9 - 11) into (1) leads us to

2

∫ ∞

0

ūγν(χ) e
iχt

dχ =

∫ ∞

0

σ̄µν(χ) J̄(χ) e
iχt

dχ , (14)

whence we obtain:

2 ūγν(χ) = J̄(χ) σ̄γν(χ) . (15)

Expressing the complex compliance as

J̄(χ) = |J̄(χ)| exp [− i δ(χ) ] , (16)

where

tan δ(χ) ≡ − Im
[

J̄ (χ)
]

Re
[

J̄ (χ)
] , (17)

we see that δ(χ) is the phase lag of a strain harmonic mode relative to the appropriate
harmonic mode of the stress:

ϕu(χ) = ϕσ(χ) − δ(χ) . (18)

2.3 The quality factor(s)

In the linear approximation, at each frequency χ the average (per period) energy dissipation

rate 〈
�

E (χ)〉 is defined by the deformation at that frequency only, and bears no dependence
upon the other frequencies:

〈 Ė(χ) 〉 = − χEpeak(χ)

Q(χ)
(19)

or, the same:

∆Ecycle(χ) = − 2 π Epeak(χ)

Q(χ)
, (20)
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∆Ecycle(χ) being the one-cycle energy loss, and Q(χ) being the quality factor related to the
phase lag at the frequency χ . It should be clarified right away, to which of the lags we are
linking the quality factor. When we are talking about a sample of material, this lag is simply
δ(χ) introduced above as the negative argument of the appropriate Fourier component of the
complex compliance – see formulae (17 - 18). However, whenever we address tide, the quality
factor becomes linked (via the same formulae) to the tidal phase lag ǫ(χ) . Within the same
rheological model, the expression for ǫ(χ) differs from that for δ(χ) , because the tidal lag
depends not only upon the local properties of the material, but also upon self-gravitation of
the body as a whole.

The aforementioned “seismic-or-tidal” ambiguity in definition of Q becomes curable as
soon as one points out to which kind of deformation the quality factor pertains. More serious
is the ambiguity stemming from the freedom in defining Epeak(χ) .

If Epeak(χ) in (19 - 20) signifies the peak energy stored at frequency χ , the resulting
quality factor is related to the lag via

Q−1
energy

= sin |δ| (21)

(not tan |δ| as commonly believed – see the calculation in the Appendix to Efroimsky 2011).
If however Epeak(χ) is introduced as the absolute maximum of work carried out on the

sample at frequency χ over a finite time interval, then the appropriate Q factor is connected
to the lag via

Q−1
work

=
tan |δ|

1 −
(

π
2 − |δ|

)

tan |δ|
, (22)

as was shown in Ibid.2

The third definition of the quality factor (offered by Goldreich 1963) is

Q−1
Goldreich

= tan |δ| . (23)

This definition, though, corresponds neither to the peak work nor to the peak energy.
In the limit of weak lagging, all three definitions entail

Q−1 = |δ| + O(δ2) . (24)

For the lag approaching π/2 , the quality factor defined as (21) assumes its minimal value,
Qenergy = 1 , while definition (22) renders Qwork = 0 . The latter is natural, since in the
considered limit the work performed on the system is negative, its absolute maximum being
zero.3

In seismic studies or in exploration of attenuation in small samples, one’s choice among
the three definitions of Q is a matter of personal taste, for the quality factor is large and
the definitions virtually coincide.

2In Efroimsky & Williams (2009), Epeak(χ) was miscalled “peak energy”. However the calculation of Q
was performed there for Epeak(χ) introduced as the peak work.

3 As Q < 2π implies Epeak < ∆E , such small values of Q are unattainable in the case of damped free
oscillations. Still, Q can assume such values under excitation, tides being the case.
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In the theory of tides, the situation is different, because at times one has to deal with
situations where the definitions of Q disagree noticeably – this happens when dissipation
is intensive and Q is of order unity. To make a choice, recall that the actual quantities
entering the Fourier expansion of tides over the modes ωlmpq are the products4

kl sin ǫl = kl(ωlmpq) sin ǫl(ωlmpq) , (25)

where kl(ωlmpq) are the dynamical analogues to the Love numbers. It is these products that
show up in the lmpq terms of the expansion for the tidal potential (force, torque). From
this point of view, a definition like (21) would be preferable, though this time with the tidal
lag ǫ instead of the seismic lag δ :

Q−1
l

= sin | ǫl | (26a)

or, in a more detailed manner:

Q−1
l
(ωlmpq) = sin | ǫl(ωlmpq) | . (26b)

Under this definition, one is free to substitute kl sin ǫl with kl/Ql . The subscript l
accompanying the tidal quality factor will then serve as a reminder of the distinction between
the tidal quality factor and its seismic counterpart.

While the notion of the tidal quality factor has some illustrative power and may be
employed for rough estimates, calculations involving bodily tides should be based not on the
knowledge of the quality factor but on the knowledge of the overall frequency dependence
of products kl sin ǫl = kl(ωlmpq) sin ǫl(ωlmpq) . Relying on these functions would spare one
of the ambiguity in definition of Q and would also enable one to take into account the
frequency dependence of the dynamical Love numbers.

3 The Andrade model and its reparameterisation

In the low-frequency limit, the mantle’s behaviour is unlikely to differ much from that of the
Maxwell body, because over timescales much longer than 1 yr viscosity dominates (Karato &
Spetzler 1990). At the same time, the accumulated geophysical, seismological, and geodetic
observations suggest that at shorter timescales anelasticity takes over and the mantle is
described by the Andrade model. However, the near-Maxwell behavior expected at low
frequencies can be fit into the Andrade formalism, as we shall explain below.

3.1 Experimental data: the power scaling law

Dissipation in solids may be effectively modeled using the empirical scaling law

sin δ = ( E χ )
−p

, (27)

4 A historical tradition (originating from Kaula 1964) prescribes to denote the tidal phase lags with
ǫlmpq , while keeping for the dynamical Love numbers the same notation as for their static predecessors: kl .
These conventions are in conflict because the product kl sin ǫlmpq is the negative imaginary part of the

complex Love number k̄l . More logical is to use the unified notation as in (25). At the same time, it should
not be forgotten that for triaxial bodies the functional form of the dependence of k̄l on frequency is defined
not only by l but also by m, p, q . In those situations, one has to deal with klmpq sin ǫlmpq , see Section 4.
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E being a constant having the dimensions of time. This “constant” may itself bear a (typ-
ically, much slower) dependence upon the frequency χ . The dependence of E on the tem-
perature is given by the Arrhenius law (Karato 2008).

Experiments demonstrate that the power dependence (27) is surprisingly universal, with
the exponential p robustly taking values within the interval from 0.14 to 0.4 (more often,
from 0.14 to 0.3 ).

For the first time, dependence (27) was measured on metals in a lab. This was done by
Andrade (1910), who also tried to pick up an expression for the compliance compatible with
this scaling law. Later studies have demonstrated that this law works equally well, and with
similar values of p , both for silicate rocks (Weertman & Weertman 1975, Tan et al. 1997)
and ices (Castillo-Rogez 2009, McCarthy et al 2007).

Independently from the studies of samples in the lab, the scaling behaviour (27) was
obtained via measurements of dissipation of seismic waves in the Earth (Mitchell 1995,
Stachnik et al. 2004, Shito et al. 2004).

The third source of confirmation of the power scaling law came from geodetic experiments
that included: (a) satellite laser ranging (SLR) of tidal variations in the J2 component of
the gravity field of the Earth; (b) space-based observations of tidal variations in the Earth’s
rotation rate; and (c) space-based measurements of the Chandler wobble period and damping
(Benjamin et al. 2006, Eanes & Bettadpur 1996, Eanes 1995).5

While samples of most minerals furnish the values of α lying within the interval 0.15 −
0.4 , the geodetic measurements give 0.14 − 0.2 . At least a fraction of this difference may
be attributed to the presence of partial melt, which is known to have lower values of p
(Fontaine et al. 2005).

On all these grounds, it is believed that mantles of terrestrial planets are adequately
described by the Andrade model, at least in the higher frequency band where anelastic-
ity dominates (Gribb & Cooper 1998, Birger 2007, Efroimsky & Lainey 2007, Zharkov &
Gudkova 2009). Some of the other models were considered by Henning et al. (2009).

The Andrade model is equally well applicable to celestial bodies with ice mantles (for
application to Iapetus see Castillo-Rogez et al. 2011) and to bodies with considerable hy-
dration in a silicate mantle.6 The model can also be employed for modeling of the tidal
response of the solid parts of objects with significant liquid-water layers.7

3.2 The Andrade model in the time domain

The compliance function of the Andrade body (Cottrell & Aytekin 1947, Duval 1978),

J(t− t ′) =
[

J + (t− t ′)α β + (t− t ′) η−1
]

Θ(t− t ′) , (28)

5 It should be noted that in reality the geodetic measurements were confirming the power law (27) not
for the seismic lag δ but for the tidal lag ǫ , an important detail to be addressed shortly.

6 Damping mechanisms in a wet planet will be the same as in a dry one, except that their efficiency will
be increased. So the dissipation rate will have a similar frequency dependence but higher magnitude.

7 In the absence of internal oceans, a rough estimate of the tidal response can be obtained through model-
ing the body with a homogeneous sphere. However the presence of such oceans makes it absolutely necessary
to calculate the overall response through integration over the solid and liquid layers. As demonstrated by
Tyler (2009), tidal dissipation in internal ocean layers can play a big role in rotational dynamics of the body.
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contains empirical parameters α and β , the steady-state viscosity η , and the unrelaxed
compliance J ≡ J(0) = 1/µ(0) = 1/µ . We endow the right-hand side of (28) with the
Heaviside step-function Θ(t − t ′) , to ensure that insertion of (28) into (5), with the sub-
sequent differentiation, yields the elastic term J δ(t − t ′) under the integral. The model
allows for modeling dissipation mechanisms over a continuum of frequencies, which is useful
for complex inhomogeneous materials with a range of grain sizes.

The Andrade model can be thought of as the Maxwell model equipped with an extra
term (t− t ′)α β describing hereditary reaction of strain to stress. The Maxwell model

J
(Maxwell)

(t− t ′) =
[

J + (t− t ′) η−1
]

Θ(t− t ′) (29)

is a simple rheology, which has a long history of application to planetary problems, but
generally has too strong a frequency dependence at frequencies higher than about 1 /yr
(Karato 2008). Insertion of (29) into (5) renders strain consisting of two separate inputs.
The one proportional to J implements the instantaneous (elastic) reaction, while the one
containing η−1 is responsible for the viscous part of the reaction.

Just as the viscous term (t− t ′) η−1 showing up in (28 - 29), so the anelastic term
(t− t ′)α β emerging in the Andrade model (28) is delayed – both terms reflect how the past
stressing is influencing the present deformation. At the same time, the anelastic reaction
differs from viscosity both mathematically and physically, because it is produced by different
physical mechanisms.

A disadvantage of the formulation (28) of the Andrade model is that it contains a pa-
rameter of fractional dimensions, β . To avoid fractional dimensions, we shall express this
parameter, following Efroimsky (2011), as

β = J τ−α
A

= µ−1 τ−α
A

, (30a)

the new parameter τ
A

having dimensions of time. This is the timescale associated with the
Andrade creep, wherefore it may be named as the “Andrade time” or the “anelastic time”.

Another option is to express β as

β = ζ−α J τ−α
M

= ζ−α µ−1 τ−α
M

, (30b)

where the dimensionless parameter ζ is related through

ζ =
τ
A

τ
M

(31)

to the anelastic timescale τ
A

and to the Maxwell time

τ
M

≡ η

µ
= η J . (32)

In terms of the so-introduced parameters, the compliance assumes the form of

J(t− t ′) = J

[

1 +

(

t− t ′

τ
A

)α

+
t− t ′

τ
M

]

Θ(t− t ′) (33a)

= J

[

1 +

(

t− t ′

ζ τ
M

)α

+
t− t ′

τ
M

]

Θ(t− t ′) . (33b)
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For τ
A
≪ τ

M
(or, equivalently, for ζ ≪ 1 ), anelasticity plays a more important role than

viscosity. On the other hand, a large τ
A
(or large ζ ) would imply suppression of anelasticity,

compared to viscosity.
It has been demonstrated by Castillo-Rogez that under low stressing (i.e., when the

grain-boundary diffusion is the dominant damping mechanism – like in Iapetus) β obeys
the relation

β ≈ J τ−α
M

= J1−α η−α = µα−1 η−α , (34a)

(see, e.g., Castillo-Rogez et al. 2011). Comparing this to (30), we can say that the anelastic
and viscoelastic timescales are close to one another:

τ
A
≈ τ

M
(34b)

or, equivalently, that the dimensionless parameter ζ is close to unity:

ζ ≈ 1 . (34c)

Generally, we have no reason to expect the anelastic and viscoelastic timescales to coincide,
nor even to be comparable under all possible circumstances. While (34) may work when
the grain-boundary diffusion dominates anelastic friction, we are also aware of a case when
the timescales τ

A
and τ

M
differ considerably. This is a situation when stressing is stronger,

and the anelastic part of dissipation is dominated by dislocations unpinning. This is what
happens in mantles of earths and superearths.

On theoretical grounds, Karato & Spetzler (1990) point out that the dislocation-unpinning
mechanism remains effective in the Earth’s mantle down to the frequency threshold χ0 ∼
1 yr−1. At lower frequencies, this mechanism becomes less efficient, giving way to viscosity.
Thus at low frequencies the mantle’s behaviour becomes closer to that of the Maxwell body.8

This important example tells us that the anelastic time τ
A

and the dimensionless parame-
ter ζ may, at times, be more sensitive to the frequency than the Maxwell time would be.
Whether τ

A
and ζ demonstrate this sensitivity or not – may, in its turn, depend upon the

intensity of loading, i.e., upon the damping mechanisms involved.

3.3 The Andrade model in the frequency domain

Through (12), it can be demonstrated (Findley et al. 1976) that in the frequency domain
the compliance of an Andrade material reads as

J̄ (χ) = J + β (iχ)−α Γ (1 + α) − i

ηχ
(35a)

= J
[

1 + (i χ τ
A
)−α Γ (1 + α) − i (χ τ

M
)−1

]

, (35b)

= J
[

1 + (i χ ζ τ
M
)−α Γ (1 + α) − i (χ τ

M
)−1

]

, (35c)

8 Using the Andrade model as a fit to the experimentally observed scaling law (27), we see that the
exponential p coincides with the Andrade parameter α < 1 at frequencies above the said threshold, and
that p becomes closer to unity below the threshold – see subsection 3.4 below.
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χ being the frequency, and Γ denoting the Gamma function. The imaginary and real parts
of the complex compliance are:

Im[J̄(χ)] = − 1

η χ
− χ−α β sin

( απ

2

)

Γ(α + 1) (36a)

= − J (χ τ
M
)−1 − J (χ τ

A
)−α sin

( απ

2

)

Γ(α + 1) (36b)

= − J (χ τ
M
)−1 − J (χ ζ τ

M
)−α sin

( απ

2

)

Γ(α + 1) (36c)

and

Re[J̄(χ)] = J + χ−α β cos
( απ

2

)

Γ(α + 1) (37a)

= J + J (χτ
A
)−α cos

( απ

2

)

Γ(α + 1) (37b)

= J + J (χ ζ τ
M
)−α cos

( α π

2

)

Γ(α + 1) . (37c)

The ensuing frequency dependence of the phase lag will look as 9

tan δ(χ) = − Im
[

J̄(χ)
]

Re
[

J̄(χ)
] =

(η χ)
−1

+ χ
−α

β sin
(

α π
2

)

Γ (α + 1)

µ
−1

+ χ
−α

β cos
(

α π
2

)

Γ (α + 1)
(38a)

=

1
χ τ

M

+
(

1
χ τ

A

)α

Γ (α + 1) sin
(

α π
2

)

1 +
(

1
χ τ

A

)α

Γ (α + 1) cos
(

α π
2

) =
z−1 ζ + z−α sin

(

α π
2

)

Γ (α + 1)

1 + z−α cos
(

α π
2

)

Γ (α + 1)
, (38b)

with z being the dimensionless frequency defined through

z ≡ χ τ
A

= χ τ
M

ζ . (39)

Evidently, for β → 0 (that is, for ζ → ∞ or τ
A
→ ∞ ), expression (38) approaches

tan δ(χ) = (τ
M
χ)

−1

, (40)

which is the frequency dependence appropriate to the Maxwell body.

3.4 Low frequencies: from Andrade toward Maxwell

The Andrade body demonstrates the so-called “elbow dependence” of the dissipation rate
upon frequency. At high frequencies, the lag δ satisfies the power law

tan δ ∼ χ−p , (41)

9 In some publications (e.g., Nimmo 2008), formula (38a) is given as an expression for the inverse quality
factor. This is legitimate when the latter is defined through (23).

11



the exponential being expressed via an empirical parameter α , where 0 < α < 1 for most
materials. It follows from (38) that at higher frequencies p = α , while at low frequencies
p = 1− α .

The statement by Karato & Spetzler (1990), that the mantle’s behaviour at low frequen-
cies should lean toward that of the Maxwell body, can be fit into the Andrade formalism,
if we agree that at low frequencies either α approaches zero (so p approaches unity) or ζ
becomes large (so τ

A
becomes much larger than τ

M
). The latter option is more physi-

cal, because the increase of τ
A

would reflect the slowing-down of the unpinning mechanism
studied in Ibid.

One way or another, the so-parameterised Andrade model is fit to embrace the result from
Ibid. Hence our treatment will permit us to describe both the high-frequency range where the
traditional Andrade model is applicable, and the low-frequency band where the behaviour
of the mantle deviates from the Andrade model toward the Maxwell body. Comparison of
the two models in the frequency domain is presented in Figure 1.

Figure 1: Andrade and Maxwell models in the frequency domain. The plot shows the decadic
logarithm of tan δ , as a function of the decadic logarithm of the forcing frequency χ (in cycles
s−1). For the Andrade body, the tangent of phase lag is given by (38b), with α = 0.2 and
τ
A
= τ

M
= 1010 s. For the Maxwell body, the tangent is rendered by (40), with τ

M
= 1010 s.
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4 Expanding a tidal potential or torque – over the tidal

modes or over the forcing frequencies?

Consider a binary system with mean motion n , and suppose that tidal dissipation in one of
the bodies much exceeds that in its companion. Then the former body may be treated as
the tidally perturbed primary, the latter being its tide-raising secondary. The sidereal angle

and the spin rate of the primary will be expressed with θ and
�

θ , while the node, pericentre,
and mean anomaly of the secondary, as seen from the primary,10 will be denoted by Ω , ω ,
and M.

In the Darwin-Kaula theory, bodily tides are expanded over the modes

ωlmpq ≡ (l − 2p) ω̇ + (l − 2p+ q) Ṁ + m (Ω̇ − θ̇) ≈ (l − 2p+ q) n − m θ̇ , (42)

with l, m, p, q being integers. Dependent upon the values of the mean motion, spin rate,
and the indices, the tidal modes ωlmpq may be positive or negative or zero.

In the expansion of the tidal potential or torque or force, summation over the integer
indices goes as

∑∞

l=2

∑l

m=0

∑∞

p=0

∑∞

q=−∞
. For example, the secular polar component of

the tidal torque will read as:

T =
∞
∑

l=2

l
∑

m=0

∞
∑

p=0

∞
∑

q=−∞

. . . kl(ωlmpq) sin ǫl(ωlmpq) , (43)

where the ellipsis denotes a function of the primary’s radius and the secondary’s orbital
elements. The functions kl(ωlmpq) are the dynamical analogues of the static Love numbers,
while the phase lags corresponding to the tidal modes ωlmpq are given by

ǫl(ωlmpq) = ωlmpq ∆tl(|ωlmpq |) = |ωlmpq | ∆tl(|ωlmpq |) sgnωlmpq = χlmpq ∆tl(χlmpq) sgnωlmpq . (44)

Here the positively defined quantities

χlmpq ≡ |ωlmpq | (45)

are the forcing frequencies in the material, while the positively defined time lags ∆tlmpq are
their functions.

Following Kaula (1964), the phase and time lags are often denoted with ǫlmpq and ∆tlmpq .
For near-spherical bodies, though, the notations ǫl(χlmpq) and ∆tl(χlmpq) would be prefer-
able, because for such bodies the functional form of the dependency ǫlmpq(χ) is defined by

10 When the role of the primary is played by a planet and the role of the perturbing secondary is played
by the host star, the argument of the pericentre of the star as seen from the planet, ω , differs by π from
the argument of the pericentre of the planet as seen from the star.
Also mind that in equation (42) the letter ω with the subscript lmpq denotes, as ever, a tidal mode,

while the same letter without a subscript stands for the periapse. The latter use of this letter in equation
(42) is exceptional, in that elsewhere in the paper the letter ω , with or without a subscript, always denotes
a tidal mode.

13



l s, but is ignorant of the values of the other three indices.11 The same therefore applies to
the time lag.

The forcing frequencies in the material of the primary, χlmpq , are positively defined.
While the general formula for a Fourier expansion of a field includes integration (or summa-
tion) over both positive and negative frequencies, it is easy to demonstrate that in the case
of real fields it is sufficient to expand over positive frequencies only. The condition of the
field being real requires that the real part of a Fourier term at a negative frequency is equal
to the real part of the term at an opposite, positive frequency. Hence one can get rid of the
terms with negative frequencies, at the cost of doubling the appropriate terms with positive
frequencies. (The convention is that the field is the real part of a complex expression.)

The tidal theory is a rare exception to this rule: here, a contribution of a Fourier mode
into the potential is not completely equivalent to the contribution of the mode of an opposite
sign. The reason for this is that the tidal theory is developed to render expressions for
tidal forces and torques, and the sign of the tidal mode ωlmpq shows up explicitly in those
expression. This happens because the phase lag in (43) is the product (44) of the tidal mode
ωlmpq and the positively defined time lag ∆tlmpq .

This way, if we choose to expand tide over the positively defined frequencies χ only, we
shall have to insert “by hand” the multipliers

sgnωlmpq = sgn
[

(l − 2p+ q)n − m θ̇
]

(46)

into the expressions for the tidal torque and force, a result to be employed below in formula
(65). The topic is explained in greater detail in Efroimsky (2011).

5 Complex Love numbers and the elastic-viscoelastic

analogy

Let us recall briefly the switch from the stationary Love numbers to their dynamical counter-
parts, the Love operators. The method was pioneered, probably, by Zahn (1966) who applied
it to a purely viscous planet. The method works likewise for an arbitrary linear rheologi-
cal model, insofar as the elastic-viscoelastic analogy (also referred to as the correspondence
principle) remains in force.

5.1 From the Love numbers to the Love operators

A homogeneous near-spherical incompressible primary alters its shape and potential, when
influenced by a static point-like secondary. At a point ~R = (R, λ, φ), the potential due to a

11 Within the applicability realm of the elastic-viscoelastic analogy employed in subsection 5.2 below, the
functional form of the complex Love number k̄l(χ) of a near-spherical object is determined by index l solely,
while the integers m, p, q show up through the value of the frequency: k̄l (χ) = k̄l (χlmpq) . This applies
to the lag too, since the latter is related to k̄l via (62).
For triaxial bodies, the functional forms of the frequency dependencies of the Love numbers and phase lags

do depend upon m, p, q , because of coupling between spherical harmonics. In those situations, notations
k̄lmpq and ǫlmpq become necessary (Dehant 1987a,b; Smith 1974). The Love numbers of a slightly non-
spherical primary differ from the Love numbers of the spherical reference body by a term of the order of the
flattening, so a small non-sphericity can usually be ignored.
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tide-generating secondary of mass M∗
sec , located at ~r

∗ = (r∗, λ∗, φ∗) with r∗ ≥ R , can be
expressed through the Legendre polynomials Pl(cos γ) or the Legendre functions Plm(sinφ) :

W (~R , ~r ∗) =
∞
∑

l=2

Wl(~R , ~r
∗) = − G M∗

sec

r ∗

∞
∑

l=2

(

R

r ∗

)

l

Pl(cos γ)

= − G M∗
sec

r ∗

∞
∑

l=2

(

R

r ∗

)

l
l

∑

m=0

(l −m)!

(l +m)!
(2− δ0m)Plm(sinφ)Plm(sinφ

∗) cosm(λ− λ∗) , (47)

G being Newton’s gravitational constant, and γ being the angle between the vectors ~r
∗

and ~R originating from the primary’s centre. The latitudes φ, φ∗ are reckoned from the
primary’s equator, while the longitudes λ, λ∗ are reckoned from a fixed meridian on the
primary.

The l th spherical harmonic Ul(~r) of the resulting change of the primary’s potential at

an exterior point ~r is connected to the l th spherical harmonic Wl(~R , ~r ∗) of the perturbing

exterior potential via Ul(~r) = (R/r)l+1 kl Wl(~R , ~r ∗) , so the total change in the exterior
potential of the primary becomes:

U(~r) =
∞
∑

l=2

Ul(~r) =
∞
∑

l=2

(

R

r

)l+1

kl Wl(~R , ~r ∗) . (48)

While in (47) ~R could lie either outside or on the surface of the primary, in (48) it would

be both convenient and conventional to make ~R a surface point. Both in (47) and (48), the

vector ~r denotes an exterior point located above the surface point ~R at a radius r ≥ R
(with the same latitude and longitude), while ~r

∗ signifies the position of the tide-raising
secondary. The quantities kl are the static Love numbers.

Under dynamical stressing, the Love numbers turn into operators:

Ul(~r, t) =

(

R

r

)l+1

k̂l(t) Wl(~R , ~r ∗, t ′) , (49)

where integration over the semi-interval t ′ ∈ ( −∞, t ] is implied:

Ul(~r, t) =

(

R

r

)l+1 ∫ t ′=t

t ′=−∞

kl(t− t ′)
�

W l (~R , ~r ∗, t ′) dt ′ (50a)

=

(

R

r

)l+1

[kl(0)W (t) − kl(∞)W (−∞)] +

(

R

r

)l+1 ∫ t

−∞

k̇l(t− t ′) Wl(~R , ~r ∗, t ′) dt ′ . (50b)

Like in the compliance operator (1 - 2), here we too obtain the boundary terms: one corre-
sponding to the instantaneous elastic reaction, kl(0)W (t) , another caused by the pertur-
bation in the infinite past, − kl(∞)W (−∞) . The latter term can be dropped by setting
W (−∞) zero, while the former term may be included into the kernel in the same manner
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as in (3 - 5):

(

R

r

)l+1

kl(0)W (t) +

(

R

r

)l+1 ∫ t

−∞

k̇l(t− t ′) Wl(~R , ~r ∗, t ′) dt ′

=

(

R

r

)l+1 ∫ t

−∞

d

dt
[ kl(t − t ′) − kl(0) + kl(0)Θ(t − t ′) ] Wl(~R,~r ∗, t ′) dt ′ . (50c)

All in all, neglecting the unphysical term with W (−∞) , and inserting the elastic term into
the Love number not as kl(0) but as kl(0)Θ(t− t ′) , we arrive at

Ul (~r, t) =

(

R

r

)l+1 ∫ t

−∞

k̇l(t− t ′) Wl(~R , ~r ∗, t ′) dt ′ , (51)

with kl(t − t ′) now incorporating the elastic reaction as kl(0)Θ(t − t ′) instead of kl(0) .
For a perfectly elastic primary, the elastic reaction would be the only term present in the
expression for kl(t− t ′) . Then the time derivative of kl would be k̇

l
(t− t ′) = kl δ(t− t ′) ,

with kl ≡ kl(0) being the static Love number, and (51) would reduce to Ul(~r, t) =
(

R
r

)l+1

kl Wl(~R , ~r ∗, t) , like in the static case.

Similarly to (11), the complex Love numbers are defined as the Fourier images of
�

kl (τ) :

∫ ∞

0

k̄l(χ)e
iχτdχ =

�

kl (τ) , (52)

overdot denoting d/dτ . Following Churkin (1998), the time derivatives
�

k l (t) can be named
Love functions .12 Inversion of (52) renders:

k̄l(χ) =

∫ ∞

0

k̇l(τ) e−iχτ dτ = kl(0) + i χ

∫ ∞

0

[ kl(τ) − kl(0)Θ(τ) ] e−iχτ dτ , (53)

where integration from 0 is sufficient, as the future disturbance contributes nothing to the
present distortion, wherefore kl(τ) vanishes at τ < 0 . Recall that the time τ denotes the
difference t− t ′ and thus is reckoned from the present moment t backward into the past

In the frequency domain, (50) will take the shape of

Ūl(χ) =

(

R

r

)l+1

k̄l(χ) W̄l(χ) , (54)

χ being the frequency, while Ūl(χ) and W̄l(χ) being the Fourier or Laplace components of
the potentials Ul(t) and Wl(t) . The frequency-dependencies k̄l(χ) should be derived from
the expression for J̄(χ) or µ̄(χ) = 1/J̄(χ) . These expressions follow from the rheological
model of the medium.

Rigorously speaking, we ought to assume in expressions (52 - 54) that the spectral com-
ponents are functions of the tidal mode ω and not of the forcing frequency χ . However, as

12 Churkin (1998) used functions, which he denoted kl(t) and which were, due to a difference in notations,

the same as our
�

kl (τ) .
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explained in the end of Section 4, employment of the positively defined forcing frequencies is
legitimate, insofar as we do not forget to attach the sign multipliers (46) to the terms of the
Darwin-Kaula expansion for the tidal torque. Therefore here and hereafter we shall expand
over χ , with the said caveat kept in mind.

5.2 Complex Love numbers as functions of the complex compli-
ance. The elastic-viscoelastic analogy

The dependence of the static Love numbers on the static rigidity modulus µ(∞) looks as

k
(static)

l
=

3

2 (l − 1)

1

1 + A
(static)

l

, (55)

where

A
(static)

l
≡ (2 l 2 + 4 l + 3)

l g ρR
µ(∞) =

3 (2 l 2 + 4 l + 3)

4 l πGρ2R2 µ(∞) =
3 (2 l 2 + 4 l + 3)

4 l π Gρ2R2 J(∞)
, (56)

with ρ , g, and R being the density, surface gravity, and radius of the body, and G being
the Newton gravitational constant. The static rigidity modulus and its inverse, the static
compliance, are denoted here with µ(∞) and J(∞) , correspondingly. These notations
imply that we identify static with relaxed.

Specifically, the static quadrupole Love number will read:

k
(static)

2 =
3

2

1

1 + A
(static)

2

, (57)

where the quantity

A
(static)

2 =
57

8 π

µ(∞)

Gρ2R2 (58)

is sometimes referred to as µ̃ . Clearly, A
(static)

2 in (57), as well as A
(static)

l in (55), is a
dimensionless measure of strength-dominated versus gravity-dominated behaviour.

It is not immediately clear whether the same expression interconnects also k̄l(χ) with
µ̄(χ) . Fortunately, though, a wonderful theorem called elastic-viscoelastic analogy, also
known as the correspondence principle, ensures that the viscoelastic operational moduli
µ̄(χ) or J̄(χ) obey the same algebraic relations as the elastic parameters µ or J (see,
e.g., Efroimsky 2011 and references therein). For this reason, the Fourier or Laplace images
of the viscoelastic equation of motion 13 and of the constitutive equation look as their static
counterparts, except that the stress, strain, and potentials get replaced with their Fourier
or Laplace images, while kl , µ , and J get replaced with the Fourier or Laplace images of
�

kl (t− t ′) ,
�

µ (t− t ′) , and
�

J (t− t ′) . For example, the constitutive equation will look like:
σ̄γν = 2 µ̄ ūγν . Therefore the solution to the problem will retain the mathematical form

13 In the equation of motion, we should neglect the acceleration term, which is justified at realistic
frequencies.

17



of Ūl = k̄l W̄l , with k̄l keeping the same functional dependence on ρ , R , and µ̄ (or J̄ ) as
in (56), except that now µ and J are equipped with overbars:

k̄l(χ) =
3

2 (l − 1)

1

1 + Al µ̄(χ)/µ
(59a)

=
3

2 (l − 1)

1

1 + Al J/J̄(χ)
=

3

2 (l − 1)

J̄(χ)

J̄(χ) + Al J
, (59b)

where

Al ≡ (2 l 2 + 4 l + 3)µ

l g ρR
=

3 (2 l 2 + 4 l + 3)µ

4 l πGρ2R2 =
3 (2 l 2 + 4 l + 3) J−1

4 l π Gρ2R2 , (60)

Although expression (60) for factors Al is very similar to expression (56) for their static
counterparts, an important difference between (56) and (60) should be pointed out. While
in (56) we had the static (relaxed) rigidity and compliance, µ(∞) and J(∞) = 1/µ(∞) ,
in (60) the letters µ and J may stand for any benchmark values satisfying J = 1/µ . This
freedom stems from the fact that the products Al J entering (59b) bear no dependence upon
J or µ . The second term in the denominator of (59b) contains µ̄ . For convenience, we
multiply and then divide it by some µ , and make the multiplier µ a part of Al as in (60).
This makes it easier for us to compare (59b) with its static predecessor (56). However the
constant µ here is essentially arbitrary, and is not obliged to coincide with, say, unrelaxed
or relaxed rigidity. Accordingly, J = 1/µ is not obliged to be the unrelaxed or relaxed
compliance.

The above caveat is important, because in certain rheological models some of the unre-
laxed or relaxed moduli may be zero or infinite. This will happen, for example, if we start
with the Maxwell or Kelvin-Voigt body and perform a transition to a purely viscous medium.
Fortunately, in realistic rheologies such things do not happen. Hence it will be convenient
(and possible) to identify the J from (60) with the unrelaxed compliance J = J(0) emerging
in the rheological model (33). Accordingly, the rigidity µ = 1/J from (60) will be identified
with the unrelaxed rigidity µ(0) = 1/J(0) . This convention will play a crucial role down the
road, when we derive formula (63).

Writing the l th complex Love number as

k̄l(χ) = Re
[

k̄l(χ)
]

+ i Im
[

k̄l(χ)
]

= |k̄l(χ)| e
−iǫl (χ)

(61)

we express the phase lag ǫl(χ) as:

|k̄l(χ)| sin ǫl(χ) = − Im
[

k̄l(χ)
]

. (62)

The importance of the products |k̄l(χ)| sin ǫl(χ) lies in the fact that they show up in the

terms of the Darwin-Kaula expansion of the tidal potential. As a result, it is these products,

and not kl/Q as some think, which emerge in the expansions for tidal forces and torques,

and for the dissipation rate.

In an attempt to preserve the popular notation kl/Q , one may define the inverse quality
factor as the sine of the lag – see the discussion in subsection 2.3. In this case, though, one
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would have to employ the tidal lag ǫl , and not the lag δ in the material (which we call
the “seismic” lag). Accordingly, one will have to write not kl/Q but kl/Ql , where
1/Ql ≡ sin ǫl .

Importantly, the functional form of the frequency-dependence sin ǫl(χ) is different for
different l . Thus an attempt of naming sin ǫl as 1/Q would give birth to a whole array of
different functions Ql(χ) . For a triaxial body, things will become even more complicated –
see footnote 11. To conclude, it is not advisable to denote sin ǫl with 1/Q .

It should be mentioned that the Darwin-Kaula theory of tides is equally applicable to
tides in despinning and librating bodies. In all cases, the phase angle ǫl = ǫl(χlmpq)
parameterises the lag of the appropriate component of the bulge, while the absolute value of
the complex Love number |k̄l| = | k̄l(χlmpq) | determines the magnitude of this component.
The overall bulge being a superposition of these components, its height may vary in time.

5.3 The tangent of the tidal lag

In the denominator of (59a) the term 1 emerges due to self-gravitation, while Al J/J̄(χ) =
Al |µ̄(χ)|/µ describes how the bulk properties of the medium contribute to deformation
and damping. So for a vanishing Al J/|J̄(χ)| we end up with the hydrostatic Love numbers

kl =
3

2 (l − 1)
, while the lag becomes nil, as will be seen shortly from (64). On the contrary,

for very large Al J/J̄(χ) , we expect to obtain the Love numbers and lags ignorant of the
shape of the body.

To see how this works out, combine formulae (35) and (59b), to arrive at

tan ǫl = − Im
[

k̄l(χ)
]

Re
[

k̄l(χ)
] = − Al J Im

[

J̄(χ)
]

{

Re
[

J̄(χ)
] }2

+
{

Im
[

J̄(χ)
] }2

+ Al J Re
[

J̄(χ)
]

= (63a)

Al

[

ζ z−1 + z−α sin
(

απ
2

)

Γ(1 + α)
]

[

1 + z−α cos
(

απ
2

)

Γ(1 + α)
]2

+
[

ζz−1 + z−α sin
(

απ
2

)

Γ(1 + α)
]2

+ Al

[

1 + z−α cos
(

απ
2

)

Γ(1 + α)
]

, (63b)

z being the dimensionless frequency defined by (39).
Comparing this expression with expression (38), over different frequency bands, we shall

be able to explore how the tidal lag ǫl relates to the lag in the material δ (the “seismic
lag”).

5.4 The negative imaginary part of the complex Love number

As we already mentioned above, rheology influences the tidal behaviour of a planet through
the following sequence of steps. A rheological model postulates the form of J̄(χ) . This
function, in its turn, determines the form of k̄l(χ) , while the latter defines the frequency
dependence of the products |k̄l(χ)| sin ǫ(χ) which enter the tidal expansions.

To implement this concatenation, one has to express |k̄l(χ)| sin ǫ(χ) via J̄(χ) . This can
be done by combining (59) with (62). It renders:

|k̄l(χ)| sin ǫl(χ) = − Im
[

k̄l(χ)
]

=
3

2 (l − 1)

− Al J Im
[

J̄(χ)
]

(

Re
[

J̄(χ)
]

+ Al J
)2

+
(

Im
[

J̄(χ)
] )2 , (64)
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a quantity often mis-denoted14 as kl/Q . Together, formulae (35) and (64), give us the
frequency dependencies for the factors |k̄l(χ)| sin ǫl(χ) entering the theory of bodily tides.
For detailed derivation of those dependencies, see Efroimsky (2011).

As explained in Section 4, employment of expressions (62 - 64) needs some care. Since
both Ū and k̄l are in fact functions not of the forcing frequency χ but of the tidal mode
ω , formulae (62 - 64) should be equipped with multipliers sgnωlmpq , when plugged into the
expression for the lmpq component of the tidal torque. With this important caveat in mind,
and with the subscripts lmpq reinstalled, the complete expression will read:

|k̄l(χlmpq)| sin ǫl(χlmpq) =
3

2 (l − 1)

− Al J Im
[

J̄(χlmpq)
]

(

Re
[

J̄(χlmpq)
]

+ Al J
)2

+
(

Im
[

J̄(χlmpq)
] )2 sgnωlmpq . (65)

To make use of this and other formulae, it would be instructive to estimate the values
of Al for terrestrial objects of different size. In Table 1, we present estimates of A2 for
Iapetus, Mars, solid Earth, a hypothetical solid superearth having a density and rigidity of
the solid Earth and a radius equal to 2 terrestrial radii (R = 2R⊕ ), and also a twice larger

hypothetical superearth (R = 4R⊕ ) of the same rheology.
Taken the uncertainty of structure and the roughness of our estimate, all quantities in

the table have been rounded to the first decimal. The values of Iapetus’ and Mars’ rigidity
were borrowed from Castillo-Rogez et al. (2011) and Johnson et al. (2000), correspondingly.

In Figure 2, we compare the behaviour of k2 sin ǫ2 = |k̄2(χ)| sin ǫ2(χ) for the values of A2

appropriate to Iapetus, Mars, solid Earth, and hypothetical superearths with R = 2R⊕

and R = 4R⊕ , as given in Table 1. Self-gravitation pulls the tides down, mitigating
their magnitude and the value of the tidal torque. Hence, the heavier the body the lower
the appropriate curve. This rule is observed well at low frequencies (the viscosity-dominated
range). In the intermediate zone and in the high-frequency band (where anelasticity dom-
inates friction), this rule starts working only for bodies larger than about twice the Earth
size. If we fix the tidal frequency at a sufficiently high value, we shall see that the increase
of the size from that of Iapetus to that of Mars and further to that of the Earth results
in an increase of the intensity of the tidal interaction. For a R = 2R⊕ superearth, the
tidal factor k2 sin ǫ2 is about the same as that for the solid Earth, and begins to decrease
for larger radii (so the green curve for the larger superearth is located fully below the cyan
curve for a smaller superearth).

6 Tidal dissipation versus seismic dissipation,

in the anelasticity-dominated band

In this section, we shall address only the higher-frequency band of the spectrum, i.e., the
range where anelasticity dominates viscoelasticity and the Andrade model is applicable safely.
Mind though that the Andrade model can embrace also the near-Maxwell behaviour, and
thus can be applied to the low frequencies, provided we “tune” the dimensionless parameter
ζ appropriately – see subsection 3.4 above.

14 One can denote (64) with kl/Q only if the quality factor is defined through (26) and endowed with the
subscript l .
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Table 1: Estimates of A
(static)

2 for rigid celestial bodies. The values of A
(static)

2 are calculated
using equation (58) and are rounded to the second figure.

radius R mean density ρ mean relaxed the resulting
shear rigidity µ(∞) estimate for A2

Iapetus 7.4× 105 m 1.1× 103 kg/m 3 4.0× 109 Pa 200

Mars 3.4× 106 m 3.9× 103 kg/m 3 1.0× 1011 Pa 19

The Earth 6.4× 106 m 5.5× 103 kg/m 3 0.8× 1011 Pa 2.2

A hypothetical superearth
with R = 2R⊕ and the 4.5× 108 m 5.5× 103 kg/m 3 0.8× 1011 Pa 0.55

same rheology as the Earth

A hypothetical superearth
with R = 4R⊕ and the 9.0× 108 m 5.5× 103 kg/m 3 0.8× 1011 Pa 0.14

same rheology as the Earth
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6.1 Response of a sample of material

At frequencies higher than some threshold value χ0 , dissipation in minerals is mainly due to
anelasticity rather than to viscosity.15 Hence at these frequencies ζ should be of order unity
or smaller, as can be seen from (33b). This entails two consequences. First, the condition

χ ≫ 1
ζ τ

M

, i.e., z ≫ 1 is obeyed reliably, for which reason the first term dominates the

denominator in (38). Second, either the condition z ≫ 1 is stronger than z ≫ ζ

1
1−α

or
the two conditions are about equivalent. Hence the anelastic term dominates the numerator
in (38): z−α ≫ z−1 ζ .

Altogether, over the said frequency range, (38) simplifies to:

tan δ ≈ (χ τ
A
)
−α

sin
(α π

2

)

Γ(α + 1) = (χ ζ τ
M
)
−α

sin
(απ

2

)

Γ(α + 1) . (66)

Clearly, tan δ ≪ 1 , wherefore tan δ ≈ sin δ ≈ δ . For the seismic quality factor, we then
have:

(seismic)Q−1 ≈ (χ τ
A
)
−α

sin
(α π

2

)

Γ(α + 1) , (67)

no matter which of the three definitions (21 - 23) we accept. Be mindful, that here we use
the term seismic broadly, applying it also to a sample in a lab.

6.2 Tidal response of a homogeneous near-spherical body

Recall that defect unpinning stays effective at frequencies above some threshold χ0 , which
is likely to be above or, at least, not much lower than the inverse Maxwell time.16 E.g.,
for the solid Earth, χ0 ∼ 1 yr−1 while τ

M
∼ 500 yr. Over this frequency band, the free

parameter ζ may be of order unity or slightly less than that. (This parameter grows as
the frequencies become short of χ0 .) Under these circumstances, in equation (63) we have:
ζz−1 ≪ z−α ≪ 1 , whence equation (63) becomes:

tan ǫl ≈ Al

1 + Al

z−α sin
(απ

2

)

Γ(1 + α) . (68)

In combination with (66), this renders:

tan ǫl =
Al

1 + Al

tan δ . (69)

Had we defined the quality factors as cotangents, like in (23), then we would have to conclude
from (69) that the tidal and seismic quality factors coincide for small objects (with Al ≫ 1 )

15 For the solid Earth, this threshold is about 1 yr−1 (Karato & Spetzler 1990). Being temperature
sensitive, the threshold may assume different values for other terrestrial planets.
Also mind that the transition is not sharp and can extend over a decade or more.
16 Dislocations may break away from the pinning agents (impurities, nodes, or jogs), or the pinning agents

themselves may move along with dislocations. These two processes are called “unpinning”, and they go
easier at low frequencies, as the energy barriers become lower (Karato & Spetzler 1990, section 5.2.3).
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and differ very considerably for superearths (i.e., for Al ≪ 1 ). Specifically, the so-defined
quality factor Ql of a superearth would be larger than its seismic counterpart Q by a factor
of about A−1

l .
In reality, the quality factors should be used for illustrative purposes only, because practi-

cal calculations involve the factor |k̄l(χlmpq )| sin ǫl(χlmpq) rendered by (65). It is this factor
which enters the lmpq term of the Fourier expansion of tides. Insertion of (36 - 37) into
(65) furnishes the following expression valid in the anelasticity-dominated band:

|k̄l(χlmpq)| sin ǫl(χlmpq) ≈

3

2 (l − 1)

Al

(Al + 1)2
sin

(απ

2

)

Γ(α + 1) ζ−α
(

τ
M

χlmpq

)−α

sgnωlmpq , for χlmpq ≫ χ
HI

, (70)

χ
HI

being the boundary between the high and intermediate frequencies, i.e., between the
anelasticity-dominated band and the transitional zone. Expression (70) resembles the fre-
quency dependency (36) for |J̄(χ)| sin δ(χ) = −Im[J̄(χ)] at high frequencies. In Figure
2, dependency (70) corresponds the slowly descending slope on the right.

A detailed derivation of (70) from formulae (36 - 37) and (65) is presented in the Appendix
to Efroimsky (2011). For terrestrial objects several times smaller than the Earth (so Al ≫
1 ), the threshold turns out to be

χ
HI

= τ−1
M

ζ

α
1−α

. (71)

For superearths (i.e., for Al ≪ 1 ), the threshold becomes

χ
HI

= τ−1
A

= τ−1
M

ζ−1 . (72)

Near the borderline between the anelasticity-dominated band and the transitional zone, the
parameter ζ could be of order unity. It may as well be lower than unity, though not much
(hardly by an order of magnitude), because too low a value of ζ would exclude viscosity
from the play completely. We however expect viscosity to be noticeable near the transitional
zone.

Finally, it should be reiterated that at frequencies lower than some χ0 the defect-
unpinning process becomes less effective, so anelasticity becomes less effective than viscosity,
and the free parameter ζ begins to grow. Hence, if the above estimates for χ

HI
turn out

to be lower than χ0 , we should set χ
HI

= χ0 “by hand”.

7 Tidal dissipation versus seismic dissipation,

in the viscosity-dominated band

When frequency χ becomes short of some χ0 , the rate of defect-unpinning-caused anelastic
dissipation decreases and viscosity begins to take over anelasticity.

If we simply assume the free parameter ζ to be of order unity everywhere, i.e., assume
that the Maxwell and Andrade timescales are everywhere comparable, then application of
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the Andrade model will set χ0 to be of order τ−1
M

. Anelasticity will dominate at frequencies
above that threshold, while below it the role of viscosity will be higher. This approach
however would be simplistic, because the actual location of the threshold should be derived
from microphysics and may turn out to differ from τ−1

M
noticeably. For example, in the

terrestrial mantle the transition takes place at frequencies as high as 1 yr−1 (Karato &
Spetzler 1990) and may be spread over a decade or more into lower frequencies, as we shall
see from equation (73).

Another somewhat simplistic option would be to assume that ζ ∼ 1 at frequencies
above χ0 , and to set ζ = ∞ at the frequencies below χ0 . The latter would be equivalent
to claiming that below this threshold the mantle is described by the Maxwell model. In
reality, here we are just entering a transition zone, where ζ increases with the decrease of
the frequency. While it is clear that in the denominator of (38) the first term dominates,
the situation with the numerator is less certain. Only after the condition

ζ ≫ (χ τ
M
)

1−α
α ≈ (χ τ

M
)4 (73)

is obeyed, the viscous term 1/(χ τ
M
) becomes leading. This way, although ζ begins to grow

as the frequency decreases below χ0 , the frequency may need to decrease by another decade
or more before threshold (73) is reached.

7.1 Response of a sample of material

Accepting the approximation that the transition zone is narrow 17 and that the predominantly
viscous regime is reached already at χ0 or shortly below, we approximate the tangent of the
lag with

tan δ ≈ (χ τ
M
)−1 , (74)

whence

sin δ ≈







(χ τ
M
)−1 for τ−1

M
≪ χ ≪ χ0 ,

1 for 0 ≤ χ ≪ τ−1
M

.
(75)

7.2 Tidal response of a homogeneous near-spherical body

When viscosity dominates anelasticity, expression (63) gets reduced to the following form:

tan ǫl ≈ Al

1 + Al + (ζ z−1)
2 ζ z−1 =

Al

1 + Al + (χ τ
M
)− 2

1

χ τ
M

, (76)

comparison whereof with (74) renders:

tan ǫl ≈ Al

1 + Al + (χ τ
M
)−2 tan δ =

Al

1 + Al + tan2 δ
tan δ . (77)

Now two special cases should be considered separately.

17 For a broader transition zone, the rheology will approach that of Maxwell at lower frequencies. This
though will not influence our main conclusions.
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7.2.1 Small bodies and small terrestrial planets

As illustrated by Table 1, small bodies and small terrestrial planets have Al ≫ 1 . So
formulae (76) and (77) take the form of

tan ǫl ≈















1
χ τ

M

for 1
τ
M

√
Al + 1

≪ χ ≪ χ0 ,

Al χ τ
M

for 0 ≤ χ ≪ 1
τ
M

√
Al + 1

≈ 1
τ
M

√
Al

,

(78)

and

tan ǫl ≈



















Al

1 + Al
tan δ ≈ tan δ for 1

τ
M

√
Al + 1

≪ χ ≪ χ0 ,

Al

tan δ
for 0 ≤ χ ≪ 1

τ
M

√
Al + 1

≈ 1
τ
M

√
Al

.

(79)

Had we defined the quality factors as cotangents of ǫl and δ , we would be faced with
a situation that may at first glance appear embarrassing: in the zero-frequency limit, the
so-defined tidal Ql would becomes inversely proportional to the so-defined seismic Q factor.
This would however correspond well to an obvious physical fact: when the satellite crosses
the lmpq commensurability, the lmpq term of the tidal torque acting on a satellite must
smoothly pass through nil, together with the lmpq tidal mode. (For example, the principal
tidal torque lmpq = 2200 must vanish when the satellite crosses the synchronous orbit.)
For a more accurate explanation in terms of the |k̄l(χ)| sin ǫl(χ) factors see subsection 7.3
below.

7.2.2 Superearths

For superearths, we have Al ≪ 1 , so (77) becomes

tan ǫl ≈ Al χ τ
M

=
Al

tan δ
for 0 ≤ χ ≪ 1

τ
M

√

Al + 1
≈ 1

τ
M

. (80)

Here we encounter the same apparent paradox: had we defined the quality factors as cotan-
gents of ǫl and δ , we would end up with a tidal Ql inversely proportional to its seismic
counterpart Q . A qualitative explanation to this “paradox” is the same as in the subsection
above, a more accurate elucidation to be given shortly in subsection 7.3 .

Another seemingly strange feature is that in this case (i.e., for Al ≪ 1 ) the tangent of the
tidal lag skips the range of inverse-frequency behaviour and becomes linear in the frequency
right below the inverse Maxwell time. This however should not surprise us, because the
physically meaningful products kl sin ǫl still retain a short range over which they demon-
strate the inverse-frequency behaviour. This can be understood from Figure 2. There, on
the yellow line corresponding to a superearth, a short segment to the right of the maximum
corresponds to the situation when kl sin ǫl scales as inverse frequency – see formula (81)
below.

Thus we once again see that the illustrative capacity of the quality factor is limited. To
spare ourselves of surprises and “paradoxes”, we should always keep in mind that the actual
calculations are based on the frequency dependence of |k̄l(χlmpq)| sin ǫl(χlmpq) .
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7.3 Tidal response in terms of |k̄l(χ)| sin ǫl(χ)
Combining (36 - 37) with (65), one can demonstrate that in the intermediate-frequency zone
the tidal factors scale as

|k̄l(χ)| sin ǫl(χ) ≈ 3

2 (l − 1)

Al

(Al + 1)2
( τ

M
χ )−1 , for τ−1

M
≫ χ ≫ τ−1

M
(Al + 1)−1 , (81)

which corresponds to the short segment on the right of the maximum on Figure 2.
From the same formulae (36 - 37) and (65), it ensues that the low-frequency behaviour

looks as

|k̄l(χ)| sin ǫl(χ) ≈ 3

2 (l − 1)
Al τ

M
χ , for τ−1

M
(Al + 1)−1 ≫ χ , (82)

a regime illustrated by the slope located on the left of the maximum on Figure 2.
Details of derivation of (81) and (82) can be found in the Appendix to Efroimsky (2011).
Just as expression (70) resembled the frequency dependency (36) for |J̄(χ)| sin δ(χ) at

high frequencies, so (81) resembles the behaviour of |J̄(χ)| sin δ(χ) at low frequencies. At
the same time, (82) demonstrates a feature inherent only in tides, and not in the behaviour
of a sample of material: at χ < τ−1

M
(Al + 1)−1 =

µ
η (Al + 1)−1, the factor |k̄l(χ)| sin ǫl (χ)

becomes linear in χ . This is not surprising, as the lmpq component of the average tidal
torque or force must pass smoothly through zero and change its sign when the lmpq com-
mensurability is crossed (and the lmpq tidal mode goes through zero and changes sign).

8 Why the lmpq component of the tidal torque does

not scale as R 2l+1

A Fourier component Tlmpq of the tidal torque acting on a perturbed primary is propor-

tional to R
2l+1

kl sin ǫl , where R is the primary’s mean equatorial radius. Neglect of the
R−dependence of the tidal factors kl sin ǫl has long been source of misunderstanding on
how the torque scales with the radius.

From formulae (70) and (81), we see that everywhere except in the closest vicinity of the
resonance the tidal factors are proportional to Al/(1 + Al)

2 where Al ∼ R−2 according to
(60). Thence the overall dependence of the tidal torque upon the radius becomes:

Over the frequency band χ ≫ τ−1
M

(1 + Al)
−1 ,

Tlmpq ∼ R 2l+1kl sin ǫl ∼
R 2l+1Al

(1 + Al)
2 ∼







R 2l−1 , for Al ≪ 1 (superearths) ,

R 2l+3 , for Al ≫ 1 (small bodies, small terrestrial planets) .
(83)

In the closest vicinity of the lmpq commensurability, i.e., when the tidal frequency χlmpq

approaches zero, the tidal factors’s behaviour is described by (82). This furnishes a different
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scaling law for the torque, and the form of this law is the same for telluric bodies of all sizes:

Over the frequency band χ ≪ τ−1
M

(1 + Al)
−1 ,

Tlmpq ∼ R 2l+1kl sin ǫl ∼ R 2l+1Al ∼ R 2l−1 . (84)

9 Conclusions and examples

Within the anelasticity-dominated band, the phase lags in a homogeneous near-spherical
body and in a sample of material interrelate as

tan ǫl =
Al

1 + Al

tan δ ≈







Al tan δ for Al ≪ 1 (superearths) ,

tan δ for Al ≫ 1 (small bodies, small terrestrial planets) .
(85)

However within the transitional zone, the link between the seismic and tidal dissipation rates
becomes more complicated.

The interrelation between the tidal and seismic damping becomes apparently paradoxical
at low frequencies, where viscosity dominates. As can be seen from (78 - 80), in the zero-
frequency limit the tidal and seismic Qs (if defined as cotangents of the appropriate lags)
become inversely proportional to one another:

tan ǫl ≈ Al χ τ
M

=
Al

tan δ
for 0 ≤ χ ≪ 1

τ
M

√

Al + 1
. (86)

This behaviour however has a good qualitative explanation – the average tidal torque lmpq
should vanish on crossing of the lmpq resonance.

While in qualitative discussions it is easier to deal with the quality factors Ql , in practical
calculations we should rely on the factors kl sin ǫl , which show up in the Darwin-Kaula
expansion of tides. Just as tan ǫl , so the quantity kl sin ǫl too becomes linear in χ for
low values of χ . As we saw in subsection 7.3, this happens over the frequencies below

χ ≪ 1
τ
M
(Al + 1)

. The slight difference between this threshold and the one shown in (86)

stems from the fact that not only the lag but also the Love number is frequency dependent.
The factors kl sin ǫl bear dependence upon the radius R of a tidally disturbed primary,

and the form of this dependence is not always trivial. At low frequencies, this dependence
follows the intuitively obvious rule that the heavier the body the stronger it mitigates tides
(and thence the smaller the value of kl sin ǫl ). However at high frequencies the calculated
frequency dependence obeys this rule only beginning from sizes about or larger than the
double size of the Earth, i.e., when self-gravitation clearly plays a larger role in tidal friction
than the rheology does – see the discussion at the end of subsection 5.4.

The dependence of kl sin ǫl upon R helps one to write down the overall R-dependence
of the tidal torque. Contrary to the common belief, the lmpq component of the torque does
not scale as R 2l+1 , see formulae (83) and (84).

Here follow some examples illustrating how our machinery applies to various celestial
bodies.
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1. For small bodies and small terrestrial planets, the effect of self-gravitation is negligible,
except in the closest vicinity of the zero frequency. Accordingly, for these bodies there
is no difference between the tidal and seismic dissipations. 18

Things change in the closest vicinity of the zero frequency. As can be observed from the
second line of (78), for small bodies and small planets the tangent of the tidal lag be-
comes linear in the tidal frequency χ when the frequency χ becomes short of a certain

threshold:19 χ ≪ 1
τ
M

√
Al + 1

≈ 1
τ
M

√
Al

. As can be seen from (82), the tidal factor

kl sin ǫl ≡ |k̄l(χ)| sin ǫl(χ) becomes linear in χ for χ ≪ τ−1
M

(Al + 1)−1 ≈ τ−1
M

A−1
l .

2. Tidal dissipation in superearths is much less efficient than in smaller terrestrial planets
or moons – a circumstance that should reduce considerably the rates of orbit circu-
larisation. This cautionary point has ramifications also upon the other tidal-dynamic
timescales (e.g., despinning, migration).

In simple words, self-gravity reduces tidal dissipation because gravitational attraction
pulls the tidal bulge back down, and thus reduces strain in a way similar to material
strength.

As can be seen from (80), at tidal frequencies χ lower than the inverse Maxwell time,20

tangent of the tidal lag changes its behaviour considerably, thereby avoiding divergence
at the zero frequency. According to (82), the same pertains to the factor kl sin ǫl .

3. While the role of self-gravity is negligible for small planets and is dominant for su-
perearths, the case of the Earth is intermediate. For our mother planet, the contri-
bution of self-gravitation into the Love numbers and phase lags is noticeable, though
probably not leading. Indeed, for µ ≈ 0.8× 1011 Pa, one arrives at:

A2 ≈ 2.2 , (87)

so formula (69) tells us that the Earth’s tidal quality factor is a bit larger than its

18 This can be understood also through the following line of reasoning. For small objects, we have Al ≫ 1 ;
so the complex Love numbers (59b) may be approximated with

k̄l(χ) = − 3

2

J (χ)

J (χ) + Al J
= − 3

2

J (χ)

Al J
+ O

(

| J/(Al J) |2
)

.

The latter entails:

tan ǫl(χ) ≡ − Im
[

k̄l (χ)
]

Re
[

k̄l (χ)
] ≈ − Im

[

J̄(χ)
]

Re
[

J̄(χ)
] = tan δ(χ) ,

which is, in fact, correct up to a sign – see the closing paragraph of subsection 5.1.
19 Recall that for small objects Al ≫ 1 .
20 For superearths, Al ≪ 1 .
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seismic counterpart, taken at the same frequency: 21

(tidal)Q(solid Earth)
2

≈ 1.5 × (seismic)Q(solid Earth)
. (88)

The geodetic measurements of semidiurnal tides, carried out by Ray et al. (2001),
yield (tidal)Q(solid Earth)

2
≈ 280 . The seismic quality factor (seismic)Q(solid Earth) varies

over the mantle, assuming values from 100 through 300. Accepting 200 for an arguable
average, we see that (88) furnishes a satisfactory qualitative estimate.

This close hit should not of course be accepted too literally, taken the Earth’s com-
plex structure and the uncertainty in our knowledge of the Earth’s rigidity. Still, on a
qualitative level, we may enjoy this proximity with cautious optimism.

4. The case of the Moon deserves a special attention. Fitting of the LLR data to the
power scaling law Q ∼ χp has rendered a small negative value of the exponential:
p = − 0.19 (Williams et al. 2001). Further attempts by the JPL team to reprocess
the data have led to p = − 0.07 . According to Williams & Boggs (2008),

“There is a weak dependence of tidal specific dissipation Q on period. The Q in-

creases from ∼ 30 at a month to ∼ 35 at one year. Q for rock is expected to have

a weak dependence on tidal period, but it is expected to decrease with period rather

than increase. The frequency dependence of Q deserves further attention and should

be improved.”

To understand the origin of the small negative value of the power, recall that it emerged
through fitting of the tidal Q2 and not of the seismic Q. If the future laser ranging
confirms these data, this will mean that the principal tide in the Moon is located close
to the maximum of the inverse tidal quality factor, i.e., close to the maximum taken
by tan ǫ2 in (78) at the frequency inverse to τ

M

√
Al . Rigorously speaking, it was of

course the factor k2 sin ǫ2 which was actually observed. The maximum of this factor
is attained at the frequency τ−1

M
(Al + 1)−1 , as can be seen from (81 - 82). It then

follows from the LLR data that the corresponding timescale τ
M
(Al + 1) should be of

order 0.1 year. As explained in Efroimsky (2011), this would set the mean viscosity
of the Moon as low as

ηMoon = 3 × 1016 Pa s , (89)

which in its turn would imply a very high concentration of the partial melt in the low
mantle – quite in accordance with the existing models (Nakamura et al. 1974, Weber
et al. 2011).

The future LLR programs may be instrumental in resolving this difficult issue. The
value of the exponential p will have ramifications for the current models of the lunar
mantle.

21 When Benjamin et al. (2006) say that, according to their data, the tidal quality factor is slightly lower
than the seismic one, these authors compare the two Q factors measured at different frequencies. Hence
their statement is in no contradiction to our conclusions.
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10 Comparison of our result with that by Goldreich

(1963)

A formula coinciding with our (69) was obtained, through remarkably economic and elegant
semi-qualitative reasoning, by Peter Goldreich (1963).

The starting point in Ibid. was the observation that the peak work performed by the
second-harmonic disturbing potential should be proportional to this potential taken at the
primary’s surface, multiplied by the maximal surface inequality:

Epeak ∼ R3 R3

19µ
2 g ρR + 1

∼ R7

19µ + 2 g ρR
, (90)

R being the primary’s radius.
In the static theory of Love, the surface strain is proportional to R2/ ( 19µ + 2 g ρR ) .

The energy loss over a cycle must be proportional to the square of the surface strain. Inte-
gration over the volume will give an extra multiplier of R3 , up to a numerical factor:

∆Ecycle ∼ − R7

( 19µ + 2 g ρR )2
. (91)

Comparison of (90) and (91) rendered

Q = − 2π Epeak

∆Ecycle

∼ ( 19µ + 2 g ρR ) ,

wherefrom Goldreich (1963) deduced that

Q

Q0
= 1 +

2 g ρR

19µ
,

Q0 being the value of Q for a body where self-gravitation is negligible. This coincides with
our formula (69).

In reality, the coincidence of our results is only partial, for two reasons:

• First, our derivation of the right-hand side of (63) was based on the prior convention
that the quantity J entering expression (60) be the unrelaxed compliance J(0) of the
mantle. Accordingly, the quantity µ = 1/J entering the expression for Al should be
the unrelaxed rigidity µ(0) = 1/J(0) . In Goldreich (1963) however, the static, i.e.,
relaxed moduli were implied.

In Ibid., this mismatch was tolerable, because the paper was devoted to small bodies.
For these objects, Al is large, no matter whether we plug the relaxed or unrelaxed µ
into (56). Thence the difference between the tidal and seismic Q factors is small, as
can be seen from the second line of (85).

For earths and superearths, however, the distinction between the unrelaxed and relaxed
(static) moduli is critical. As can be seen from the first line of (85), the tidal Q factor
is inversely proportional to Al and, thereby, is inversely proportional to the mantle
rigidity µ . As well known (e.g., Ricard et al. 2009, Figure 3), the unrelaxed µ of the
mantle exceeds the relaxed µ by about two orders of magnitude.

30



• Second, as our calculation demonstrates, the simple interrelation given by (69) and (85)
works only in the anelasticity-dominated band. In the transition zone (which begins,
in the solid Earth, at timescales longer than ∼ 1 yr) and in the viscosity-dominated
band of lower frequencies, the interrelation between the tidal and seismic lagging is
more complicated, and it deviates from Goldreich’s formula in a fundamental way.
Specifically, in the zero-frequency limit the cleavage between the tidal and seismic
dissipation laws gets even larger: the tidal and seismic Q s become not proportional
but inversely proportional to one another. Description of tidal lagging in all these,
low-frequency bands requires a rheological model and the subsequent mathematics,
and cannot be obtained through the simple arguments used by Goldreich (1963).

Despite these differences, the estimate by Goldreich (1963) provided as close a hit as was
possible without resorting to heavy mathematics. The elegance of Peter Goldreich’s argu-
ments and the depth of his insight are especially impressive, taken the complexity of the
problem and the volume of calculations required to obtain the exact answer.
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Appendix

Symbol Key

Al Dimensionless product emerging in the denominator of the expression for the Love number kl
E Energy
E Empirical constant having the dimensions of time, in the generic rheological law (27)
g Surface gravity
G Newton’s gravitational constant
l Degree (spherical harmonics, Legendre polynomials)
m Order (spherical harmonics, associated Legendre polynomials)
J, J(0) Unrelaxed compliance
J(∞) Relaxed compliance
J(t − t ′) Creep-response function (compliance function, kernel of the compliance operator)

Ĵ Compliance operator
kl Tidal Love number of degree l

kl(t− t ′) Kernel of the Love operator of degree l

k̂l The Love operator of degree l

k̄l(χ) Fourier component, at frequency χ, of the time derivative of the kernel kl(t − t ′)
M Mean anomaly
n Mean motion
p Exponential in the generic rheological law (27)
Pl Legendre polynomials of degree l

Plm Legendre associated functions (associated Legendre polynomials) of degree l and order m

Q Dissipation quality Factor
r Distance
~r Vector connecting the centre of the tidally-perturbed body (interpreted as the primary) with a point exterior to this body
~r

∗ Vector connecting the centre of the tidally-perturbed body (the primary) with a point-like tide-raising secondary
R Primary’s mean radius
t Time
uγν Shear strain tensor
ūγν(χ) Fourier component, at frequency χ , of the shear strain tensor
U Change in the potential of the tidally-perturbed body (interpreted as the primary)
W Disturbing potential generated by the tide-raising body (interpreted as the secondary)
α, β Parameters of the Andrade model
γ, ν Tensor indices
Γ the Gamma function
δ Material phase lag
∆t Time lag
ǫ Tidal phase lag
ǫlmpq Tidal phase lag of the mode lmpq in the Darwin-Kaula expansion

λ Longitude
ζ Parameter of the reformulated Andrade model (ratio of the anelastic timescale τ

A
to the Maxwell time τ

M
)

η Viscosity
µ, µ(0) Unrelaxed shear modulus (unrelaxed rigidity)
µ(∞) Relaxed shear modulus (relaxed rigidity)
µ(t − t ′) Stress-relaxation function (kernel of the rigidity operator)
µ̂ Rigidity operator
φ Latitude
ρ Mass density
σγν Shear stress tensor
σ̄γν(χ) Fourier component, at frequency χ , of the shear stress tensor
τ Time
τ
M

Maxwell time (viscoelastic timescale)
τ
A

Andrade time (anelastic timescale)
T Tidal torque
Θ(t− t ′) the Heaviside function
θ Sidereal angle of the tidally-disturbed body (interpreted as the the primary)
�

θ Spin rate of the primary
ϕσ , ϕu Initial phases of the stress and strain
χ Frequency
χ

0
Frequency threshold marking the boundary between the anelasticity- and viscosity-dominated frequency bands

χlmpq Physical frequencies of deformation emerging in the tidal theory (absolute values of the tidal modes ωlmpq )

ωlmpq Tidal modes in the Darwin-Kaula expansion of tides

ω Argument of the pericentre
Ω Longitude of the node
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Figure 2: Negative imaginary part of the complex quadrupole Love number, k2 sin ǫ2 =
−Im

[

k̄2(χ)
]

, as a function of the tidal frequency χ . The black, red, and blue curves refer,
correspondingly, to Iapetus, Mars, and the solid Earth. The cyan and green curves refer to the two
hypothetical superearths described in Table 1. These superearths have the same rheology as the
solid Earth, but have sizes R = 2R⊕ and R = 4R⊕ . Each of these five objects is modeled with

a homogeneous near-spherical self-gravitating Andrade body with α = 0.2 and τ
A
= τ

M
= 1010 s.

In the limit of vanishing tidal frequency χ, the factors k2 sin ǫ2 approach zero, which is natural
from the physical point of view. Indeed, an lmpq term in the expansion for tidal torque contains
the factor kl(χlmpq) sin ǫl(χlmpq) . On crossing the lmpq resonance, where the frequency χlmpq

goes through zero, the factor kl(χlmpq) sin ǫl(χlmpq) must vanish, so that the lmpq term of the
torque could change its sign.
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