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ABSTRACT

We develop a comprehensive quantitative description of the cross section mechanism discovered by Lazar-
ian. This is one of the processes that determine grain orientation in clouds of suprathermal cosmic dust. The
mechanism manifests itself when an ensemble of suprathermal paramagnetic granules is placed in a magnetic
field and is subject to ultrasonic gas bombardment. The mechanism yields dust alignment whose efficiency
depends on two factors: the geometric shape of the granules and the angle � between the magnetic line and
the gas flow. We calculate the quantitative measure of this alignment and study its dependence on the said
factors. It turns out that, irrelevant of the grain shape, the action of a flux does not lead to alignment if
� ¼ arccosð1=

ffiffiffi
3

p
Þ.

Subject heading: dust, extinction

1. INTRODUCTION: THE PHYSICAL NATURE
OF EFFECT

Starlight polarization is a long-known effect. Because of
its correlation with reddening, the phenomenon is explained
by alignment of particles in dust nebulae (Hall 1949; Hiltner
1949). The alignment causes differential extinction of elec-
tromagnetic waves of different polarizations and provides a
remarkable example of order emerging in a seemingly cha-
otic system.

In a nutshell, the polarization is due to the grains’ non-
sphericity. A grain has different cross sections, and these are
somehow aligned within the cloud. A remarkable fact is
that, whatever orientational mechanisms show themselves
in the grain dynamics, the alignment always takes place rela-
tive to the interstellar magnetic field.

Rotational dynamics of an interstellar particle is deter-
mined by a whole bunch of accompanying physical proc-
esses whose combination produces a variety of orientational
mechanisms. Which of these come into play in a particular
physical setting depends on the suprathermality of the dust
cloud. Suprathermal grains are, by definition, grains that
spin so rapidly that their averaged (over the dust ensemble)
rotational kinetic energy Eroth i much exceeds the (multi-
plied by the Boltzmann constant �) temperature Tgas of the
surrounding environment. The suprathermality degree is
then introduced as the following ratio:

� ¼ Eroth i
�Tgas

: ð1Þ

Dust ensembles with � of order unity are called thermal or
Brownian. Clouds with �41 are called suprathermal. In the
observable universe, values of � of order 102 are not
unusual.

The leading reason for suprathermal rotation is forma-
tion of H2 molecules at the defects on the granule surface:
over such a defect (called active site), two atoms of H couple
to form a molecule, ejection whereof applies an uncompen-
sated torque to the granule surface (Purcell 1979). These so-
called spin-up torques keep emerging at each active site until
the site gets ‘‘ poisoned ’’ through the everlasting accretion.
After that, some other active site will dominate the spin

dynamics of the grain, by its H2 ‘‘ rocket.’’ This change
of spin state will, with some probability, go through a
short-term decrease, to thermal values, of the grain’s
angular velocity. Such breaks are called ‘‘ crossovers ’’ or
‘‘ flip-overs.’’

Another pivotal issue is the existing evidence of paramag-
netic nature of a considerable share of dust particles (Whit-
tet 1992) that makes them subject to the Barnett effect. The
latter takes place in para- and ferromagnetics because of
interaction between the spins of unpaired electrons and the
macroscopic rotation of crystal lattice (Stoner 1934). The
coupling has its origin in the angle-dependent terms in the
dipole-dipole interaction of neighboring spins. It spontane-
ously endows a rotating para- or ferromagnetic body with
a magnetic moment parallel to the angular velocity1

(Lazarian & Roberge 1997). Purcell offered the following
illustration. If a rotating body contains an equal amount of
spin-up and spin-down unpaired electrons, its magnetiza-
tion is nil. Its kinetic energy would decrease, with the total
angular momentum remaining unaltered, if some share of
the entire angular momentum could be transferred to the
spins by turning some of the unpaired spins over (and, thus,
by dissipating some energy). This potential possibility is
brought to pass through the said coupling.

An immediate outcome from granule magnetization is
the subsequent coupling of the magnetic moment M with
the interstellar magnetic field B—the magnetic moment pre-
cesses about the magnetic line.What is important is that this
precession takes place at an intermediate rate. On the one
hand, it is slower than the grain’s spin about its instantane-
ous rotation axis. On the other hand, the precession period
is much shorter than the typical timescale at which the rela-
tive-to-B alignment gets established.2 The latter was proven
byDolginov &Mytrofanov (1976) for magnetization result-
ing from the Barnett effect and byMartin (1971) for magnet-
ization resulting from the grain’s charge.

1 Another contribution to the magnetization comes from the electric
charge carried by the granule.

2 A more exact statement, to be needed below, is that the period of pre-
cession (about B) of the magnetic momentM (and of the major-inertia axis
Z aligned therewith) is much shorter than the mean time between two
sequent flip-overs of a spinning granule (Purcell 1979; Roberge, DeGraff, &
Flaherty 1993).
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If we disembody the core idea of the Barnett effect from
its particular implementation, we shall see that it is of quite
a general sort: a free top, although conserving its angular
momentum, tends to minimize its kinetic energy through
some dissipation mechanism(s). This fact, omitted in the
Euler-Jacobi theory of unsupported top, makes their theory
inapplicable at timescales comparable to the typical time of
dissipation (Efroimsky 2002). The needed generalization of
the insupported-top dynamics constitutes a mathematically
involved area of study (Efroimsky 2000), which provides
ramifications for wobbling asteroids and comets (Efroimsky
2001), rotating spacecraft, and precessing pulsars (Trümper
et al. 1986; Alpar & Ögelman 1987; Bisnovatyi-Kogan &
Kahabka 1993; Stairs et al. 2000). Fortunately, in the case
of cosmic-dust physics, we need only some basics of this
theory. A free rotator has its kinetic energy minimized (with
its angular momentum being fixed) when the rotation axis
coincides with the axis of major inertia. In this so-called
principal state, the major-inertia axisZ, the angular velocity
�, and the angular momentum vector J are all aligned. In
other, complex rotation states, both the maximal-inertia
axis Z and angular velocity � precess about the angular
momentum J . This precession is also called ‘‘ wobble ’’ or
‘‘ tumbling,’’ in order to distinguish it from the precession of
the magnetic momentM about the magnetic line. Similarly,
the wobble relaxation (i.e., gradual alignment of axis Z and
of � toward J) should be distinguished from the granule
alignment relative to the magnetic field B: the latter effect is
the eventual target of our treatise, while the former is merely
a thread in the tapestry. Still, the wobble relaxation is far
more than a mere technicality: it is important to know if a
typical time of the wobble relaxation is much less than the
typical times of the external interactions (like, say, the
period of precession of M about B). In case the wobble
relaxation is that swift, one may assume that the precession
(about B) of the magnetic momentM is the same as preces-
sion of the angular momentum J about B; indeed, in this
case, both J and the major-inertia axisZwill be aligned with
�, which is parallel toM . This parallelism of all four vectors
is often called not alignment but ‘‘ coupling,’’ to distinguish
it from the alignment relative to B. This coupling is enforced
by two different processes. One is an effect kin to that of Bar-
nett: tumbling of � relative to conserved3 J (and, therefore,
relative to an inertial observer) yields periodic remagnetiza-
tion of the material, which results in dissipation. The other
effect is the anelastic dissipation: in a complex rotational
state the points inside the body experience time-dependent
acceleration that produces alternate stresses and strains.
Anelastic phenomena entail inner friction (which may be
understood also in terms of a time lag between the strain
and stress). The contributions from the Barnett and anelas-
tic effects to the coupling were compared by Purcell in his
long-standing cornerstone work (Purcell 1979). Purcell
came to an unexpected conclusion that the input from the
Barnett effect much outweighs that from anelasticity. An
accurate treatment (Lazarian & Efroimsky 1999) shows that
the anelastic dissipation is several orders of magnitude more
effective than presumed, and in many physical settings it
dominates over the Barnett dissipation. The case of supra-
thermal dust is one such setting. Without going into redun-
dant details, we would mention that combination of the two

dissipation processes provides at least partial alignment of
Z and� toward J in Brownian clouds, and it provides a per-
fect alignment in suprathermal ones.

The presently known mechanisms of grain alignment can
be classified into three categories: mechanical mechanisms,
paramagnetic mechanisms, and via radiative torques. The
latter mechanism was addressed in Dolginov &Mytrofanov
(1976), Lazarian (1995a), and Draine &Weingartner (1996,
1997). It has not yet been well understood. The paramag-
netic alignment is due to the Davis-Greenstein (1951) mech-
anism (initially suggested for Brownian dust particles) and
to the Purcell (1979) mechanism (which is a generalization
of the Davis-Greenstein mechanism to the suprathermal
case). The Davis-Greenstein and Purcell processes operate
to bring the granule’s rotation axis (which is, as explained
above, fully or partially aligned with the granule’s major-
inertia axis) into parallelism with the magnetic line. This
happens because precession of the grain’s spin axis about B
entails material remagnetization4 and, therefore, dissipation
resulting in a slow removal of the rotation component
orthogonal to B. The induced alternating magnetization M
will lag behind rotating B, giving birth to a nonzero torque
equal, in the body frame, toM � B. It can be shown (Davis
& Greenstein 1951) that this torque will entail steady
decrease of the orthogonal-to-B component of the angular
velocity.5 The so-called6 mechanical alignment comprises
the Gold (1952) mechanism and those of Lazarian (1995a,
1995b, 1995c, 1995d, 1995e). Lazarian suggested two mech-
anisms, the crossover one and the cross section one, and
they show themselves in the case of suprathermal grains
only.

The nature of the Gold mechanism is the following. Each
collision of the dust particle with an atom or a molecule of
the streaming gas adds to the particle’s angular momentum
a portion perpendicular to the relative velocity. As
explained above, the major-inertia axis of the body tends to
align with the angular momentum vector. One, hence, may
say that the interstellar wind will spin up the granule so that
its maximal-inertia axis will ‘‘ prefer ’’ positions perpendicu-
lar to the wind. Since the said major-inertia axis is, roughly,
the shortest dimension of the rotator, one may deduce that,
statistically, the particles tend to rotate with their shortest
axes orthogonal to the gas flow. This picture is, however,
complicated by the precession of the magnetic moments
(and of the angular momenta that tend, for the aforemen-
tioned reason, to align with the magnetic moments) about
the magnetic line. This mechanismworks only for Brownian
dust clouds because it comes into being as a result of the
elastic gas-grain collisions to which only thermal granules
are sensitive. To be more exact, it is assumed here that the
precession period is much shorter than a typical time during
which the grain’s angular momentum alters considerably.

The suprathermally rotating dust particles ignore the ran-
dom torques caused by the elastic gas-grain collisions

3 The angular momentum is conserved at timescales shorter than the
duration of a precession cycle of J aboutB.

4 It is assumed that the grain is either paramagnetic (Davis & Greenstein
1951) or ferromagnetic (Spitzer & Tukey 1951; Jones & Spitzer 1967). The
case of a diamagnetic granule has not been addressed in the literature so
far.

5 A rigorous analysis of the Davis-Greenstein process should be carried
out in the language of the Fokker-Planck equation (Jones & Spitzer 1967).

6 The word ‘‘ so-called ’’ is very much in order here because the mechani-
cal mechanisms, too, provide alignment relative to the magnetic line. Their
name‘‘mechanical ’’ simply reflects the fact that these effects are not purely
magnetic but involve the grains’ mechanical interaction with the gas flow.
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because the timescales for the random torques to alter the
spin state are several orders of magnitude larger than the
average time between subsequent crossovers (Purcell 1979).
Still, the dust granules do become susceptible to the random
torques during the brief crossovers when the granule
becomes, for a short time, thermal (i.e., slow spinning). This
is the essence of the first Lazarian mechanism of alignment,
introduced in Lazarian (1995b) under the name of ‘‘ cross-
over mechanism.’’ Hence, the first Lazarian mechanism is
the Gold alignment generalized for suprathermal grains, the
generalization being possible because even suprathermal
granules become thermal for small time intervals.

The second Lazarian mechanism, termed ‘‘ cross section
mechanism ’’ by Lazarian (1995b, 1995e) and studied in
Lazarian & Efroimsky (1996) and Lazarian, Efroimsky, &
Ozik (1996), is not a generalization of any previously known
effect but is a totally independent, very subtle phenomenon.
The underlying physical idea is simple: a precessing (about
the magnetic line) interstellar granule will ‘‘ prefer ’’ to
spend more time in a rotational mode of the minimal effec-
tive cross section. In other words, the particle has to ‘‘ find ’’
the preferable mean value of its precession cone’s half-angle,
a value that will minimize the mean cross section. Here the
‘‘mean cross section ’’ is the averaged (over rotation, and
then over precession) cross section of a granule as seen by
an observer looking along the direction of interstellar drift.
It is crucial that, although the alignment is due to gas-grain
collisions, it establishes not relative to the wind direction
but relative to the magnetic line about which the spinning
grain is precessing.

Now, the goal is to know how effective this mechanism is
for dust particles of various shapes. In Lazarian & Efroim-
sky (1996) and Lazarian et al. (1996) we addressed the cross
section alignment of oblate and prolate symmetrical grains.
In the current paper we intend to extend the study to ellip-
soidal granules of arbitrary ratios between the semiaxes.

2. STARLIGHT EXTINCTION ON
INTERSTELLAR DUST

Starlight attenuation by dust, called extinction, comprises
two separate phenomena: scattering and absorption. The
final result is a cooperative effect of all particles the ray
bypasses.

Absorption is taking place on different grains independ-
ently from one another. For scattering such independence is
not, generally, guaranteed. Still, in our study we deal solely
with the independent scattering and omit the phase relations
between waves scattered by neighboring grains. This is justi-
fied by the starlight not being monochromatic: the lack of
coherence in it excludes any phase-related phenomena.7

Thence, the intensities of waves scattered from various
granules must be added without regard to phase. Finally,
we shall be blithe about the multiple scattering because it
has almost no effect on the attenuation process. Indeed, the
granules are separated by distances exceeding their size by
many orders of magnitude, and the optical depth of most
interstellar8 dust clouds is well below unity.

The starlight-scattering differential cross section on a dust
grain is introduced, in a pretty standard manner, as the inci-
dent wave front area wherefrom the photons get scattered
into solid angle d�, divided by this solid angle: dCscat/d�.
Its integral over d� would then give the full cross section
Cscat of the process. However, it would be physically incom-
plete to interpret Cscat simply as the incident wave front area
whence the photons get scattered off their initial direction.
As well known since the times of Newton and Huygens, the
corpuscular interpretation neglects the interference of the
scattered and incident components of light. Therefore, it
will fail to describe the forward scattering. The problem is
somewhat subtle. On the one hand, the mathematical
expression for differential cross section formally remains
correct for any finite value of the scattering angle h. Indeed,
for an arbitrarily small but finite angle, the observer poten-
tially can distinguish between the primary and the scattered
images. To that end, he will have to employ a sufficiently
powerful telescope located at a sufficiently remote distance
from the scatterer. On the other hand, the needed resolving
power of the telescope must be achieved by increasing the
size of the object lens. The finite radius of lenses thereby
imposes a restriction on the scattering angle values.9 Hence,
the expression for full cross section Cscat is of no physical
interest. It corresponds to no physical measurement because
it is pointless to carry out the integration over too close a
vicinity of � ¼ 0. Starlight extinction on the cosmic dust is
such a case: with the distances grossly exceeding the device
size, the observations are performed at effectively zero scat-
tering angles, so the telescope does not distinguish the for-
ward-scattered light from the primary wave. A simple
estimate (van de Hulst 1957) that takes into account the
interference leads to the natural conclusion that in the for-
ward-scattering case the scatterer reduces the light energy
entering the telescope. This relative reduction is called
forward-scattering cross section:

Cfsð!Þ ¼
4�

k2
RefSð0Þg ; ð2Þ

S(0) being the amplitude of the incident beam, in the direc-
tion from the source toward the observer. Roughly speak-
ing, the observer will get an impression that a certain share
Cfs/A of the object lens area A is covered up. This shows the
fundamental difference between the scattering cross section
and forward-scattering cross section: while the former is
associated with the area of the incident wave front, the latter
is associated with that of the observer’s aperture. This pro-
found difference stems from our inability to separate the
front-scattered light from the incident wave. As agreed
above, we consider only optically thin clouds. This means
that we totally ignoreCscat but do takeCfs into account.

Physically, it is quite obvious that absorption will come
into play through adding some Cabs to Cfs. Even less light
will reach the lens, and the observed intensity will be

I0ð!Þ A� Cfsð!Þ � Cabsð!Þ½ � : ð3Þ

7 In the future, it may be good to measure the starlight polarization at
separate wavelengths.

8 This is not necessarily true for circumstellar environments where the
dust is more abundant.

9 Suppose that our telescope is aimed at a distant star, the scatterer being
slightly off the line of sight. In order for the secondary image to get into the
object lens, the scattered photons must be deflected at angles not exceeding
R/r, with R and r being the radius of the lens and the distance to the scat-
terer, respectively. At the same time, the angular resolution of the lens is less
than �/R. This results in the trivial inequality �=R < R=r, whence
R > �rð Þ1=2.
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In the end of the preceding section we agreed that the light
extinction by different granules is independent and is free
from phase correlations: the intensity losses simply add.
This will result in the extinction cross sections of the single
granules added to give the extinction cross section of the
entire cloud (for a detailed explanation see van de Hulst
1957, pp. 31–32). Finally, for whatever real observation, the
above expression must be multiplied by the window func-
tionW(!) of the device and integrated over !. All in all, the
resulting attenuation will be expressed by the extinction
cross section

Cext ¼

R1
0 Wð!ÞI0ð!Þ

P
i C

fig
fs ð!Þ þ C

fig
absð!Þ

h i
d!R1

0 Wð!ÞI0ð!Þd!
; ð4Þ

where i is the number of a particle and C
fig
abs;fs is its cross

section. If W(!) carves out a band wherein C
fig
fs þ C

fig
abs

depends on !weakly, we are left with

Cext �
X
i

�
C

fig
fs þ C

fig
abs

�
: ð5Þ

All of the above is valid for both polarizations independ-
ently. Thus, the scattering, forward-scattering, absorption,
and extinction cross sections may be introduced for them
separately.

3. THE MEASURE OF ALIGNMENT: ITS RELATION
TO POLARIZATION

In x 1 we explained what it means for an interstellar grain
to be aligned. For the effect to be quantified, it should be
endowed with some reasonable measure, one that would
interconnect the dust dynamics with the starlight polariza-
tion degree.

Linear polarization essentially means that if the ray prop-
agates in the zo-direction, there exist two (orthogonal to zo
and to one another) directions, xo and yo, appropriate to the
maximal and minimal magnitudes of the electric field in this
ray. The subscript ‘‘ o ’’ signifies the observer’s frame. The
question now is, how will these maximal and minimal mag-
nitudes Eo

x and Eo
y (or, equivalently, the maximal and mini-

mal intensities Eo2
x and Eo2

y ) evolve along the line of sight,
within the cloud? Properly speaking, one should talk about
the ensemble averages of these intensities, hEo2

x i and hEo2
y i,

the averaging being implied first over the grain orientation
(relative to its angular momentum), then over the angular
momentum’s precession about the magnetic field, and
finally over the half-angle � of the precession cone. (The
direction of magnetic field will be assumed to be constant
over the line of sight, within the cloud.) While each of the
first two averagings will be merely an integration over a full
circle, the latter averaging will involve some distribution
function for �. This distribution function should be pro-
vided by the detailed theory of a particular orientational
mechanism dominating the alignment process.

In neglect of the secondary scattering, the decrease in
intensity dI is proportional to the length dz and to the dust
particle density n in the cloud: dI ¼ �Cextn dz, with Cext

being the aforementioned extinction cross section (eq. [4]).
What we observe are the intensities at the exit from the
nebula. Call them hEo2

x i and hEo2
y i. Then

Eo2
x

� �
� exp �Co

xnlð Þ ; Eo2
y

� �
� exp �Co

ynl
� �

; ð6Þ

l being the depth of the cloud as seen by the observer and
Co

x;y being the mean extinction cross sections for the two lin-
ear polarizations orthogonal to the observer’s line of sight.

Suppose that, prior to entering the nebula, the starlight
was unpolarized. One can characterize the polarizing ability
of the cloud by the measured flux intensity I as a function of
the angle of rotation of some analyzing element of the tele-
scope. In practice, they rather employ a relative measure,
Pext, which is the degree of polarization due to selective
extinction:

Pext �
Ix � Iy
Ix þ Iy

¼
hEo2

x i � hEo2
y i

hEo2
x i þ hEo2

y i : ð7Þ

As follows from the above formulae,

Pext ¼
exp �Co

xnl
� �

� expð�Co
ynlÞ

exp �Co
xnl

� �
þ expð�Co

ynlÞ
�

Co
xnl� Co

ynl

2
;

the approximation being valid for Pext5 1 (with no need to
assume thatConl5 1). The measure of polarization involves
the difference ðCo

x � Co
yÞ that depends on the extinction

properties of a single grain and on the degree of alignment
in the cloud. The topic was addressed by many. A brief con-
clusion that saves type will be as follows: no matter which
alignment mechanism dominates, the difference ðCo

x � Co
yÞ

should be expressed as a function of a single granule’s
extinction cross sections and of the magnetic field direction
(relative to the line of sight). Naturally, the said difference
will also be a functional of the precession cone half-angle
distribution. This half-angle, often denoted as �, comprises
the angular separation between the magnetic field and the
particle’s angular momentum precessing thereabout. The
statistical distribution of � over the ensemble depends on
the dominating orientational mechanism(s), and its cal-
culation is a technical issue that sometimes is extremely
laborious.

Expressions for Co
x;y in terms of the aforementioned argu-

ments are given, for oblate and prolate symmetrical gran-
ules, in Greenberg (1968), Purcell & Spitzer (1971), Lee &
Draine (1985), Hildebrand (1988), and Roberge & Lazarian
(1999). To fulfil the goal of our study, we must generalize
those results for the case of triaxial ellipsoid. To this end, we
introduce the extinction cross sections CX ;Y ;Z of the grain,
for light polarized along its minimal- (X ), middle- (Y ), and
maximal-inertia (Z) axes.10 Calculation, presented in
Appendix A, results in the relation

Co
x � Co

y ¼ CX þ CY

2
� CZ

� �
R cos2 � ; ð8Þ

where � is the angle between the magnetic field and the plane
of sky (Fig. 1) and R is the so-called Rayleigh reduction fac-
tor defined as

R � 3
2 cos2 �
� �

� 1
3

� �
; ð9Þ

� being the half-angle of the precession cone described by
the grain’s angular momentum about the magnetic line
(Fig. 2). As already mentioned, this angle is not the same for

10 These cross sections characterize particular species of dust. Computa-
tion of these is comprehensively discussed by van de Hulst (1957; see also
Martin 1974; Draine & Lee 1984).
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all grains but obeys some statistical distribution determined
by a particular physical setting. The above formula for R
was obtained assuming principal rotation (when the align-
ment of the principal axis with the angular momentum is
promptly enforced), valid for suprathermally rotating
grains (Lazarian & Efroimsky 1999). In the thermal case,
when angle h between the angular momentum and the
major-inertia axis is nonzero, the Rayleigh factor would
lookmore complicated:

R ¼ 3
2 cos2 � � 1

3

� �
3
2 cos2 �� 1

3

� �� �
: ð10Þ

Returning to equation (9), we would point out the evident
fact that in the absence of alignment, the ensemble average

of cos2 � is equivalent to averaging simply over the solid
angle: hcos2 �i ¼ 1

3. This nullifies the R factor and makes the
radiation unpolarized:Co

x ¼ Co
y .

4. CALCULATION OF THE RAYLEIGH
REDUCTION FACTOR

The basic idea of the cross section orientational process
(pioneered by Lazarian 1995b, 1995e) comes from the fact
that the average time between two sequent crossovers is pro-
portional to a typical lifetime of an active site (‘‘ Purcell
rocket ’’). Each such site is eventually ‘‘ poisoned ’’ through
the evergoing accretion of atoms brought by the interstellar
wind. Emergence of new active sites leads to crossovers.
Henceforth, the higher the accretion rate, the shorter the
average lifetime of a typical Purcell rocket. Now, since the
atoms adsorbed by the surface get delivered through the gas
bombardment, one may state that the said lifetime is pro-
portional to the rate of gas-grain collisions. The latter rate,
in its turn, is proportional to the gas-grain effective cross
section, i.e., to the averaged (over the period of precession
about the magnetic line) cross section of a granule, as seen
by an observer looking along the line of gas flow. To sum-
marize, the average time between two sequent crossovers is
proportional to an active site’s lifetime, the latter being pro-
portional to the rate of gas-grain collisions, which in its turn
is proportional to the effective cross section of the precessing
granule in the flow. All in all, the dust particle will spend
longer times in rotational states of smaller effective cross
section. The cross section mechanism is essential for both
rapid and slow flows.11

This line of reasoning, developed by Lazarian, brings into
play several timescales. One is the period trot of grain spin
about its own rotation axis. The other is the wobble period
twobble, i.e., the period of precession of the angular velocity
� and major-inertia axis Z about the angular momentum J.
Third is the period T of precession of J about the magnetic
line B. The fourth one is the mean time � between subse-
quent flip-overs of the granule.

Suprathermal rotation is swift: time trot is much shorter
than the other timescales involved. Time twobble is irrelevant
in the suprathermal case because in this case we neglect the
wobble: as explained in x 1, the grain’s magnetic moment,
the angular velocity vector, and the maximum-inertia axis
are all aligned along the angular momentum, and they all
precess about B, always remaining parallel to one another.
The rate of this precession about B is slower than the gran-
ule’s rotation but still rapid enough: as mentioned in x 1, the
precession period T is much shorter than a typical interval �
between crossovers. A crossover of a spinning particle can
happen for one (or both) of two reasons: (1) spin damping
through collisions with gas atoms and (2) grain resurfacing
that alters positions of active sites. Without going into
detailed dynamics, let us assume that on the average a cross-

11 For high (>2 km s�1) relative velocities, the cross section mechanism
coerces the grain to align in the same direction as the crossover mechanism
does (Lazarian 1995b). For slower flows, the stochastic torques produced
by the Purcell rockets exceed the torques caused by collisions with gas.
Thence, no considerable alignment will arise during the flip-overs. This
makes the role of the crossover mechanism marginal. Therefore, one may
expect that the cross section mechanism will dominate in slow flows. Still,
the flow should be, at least, mildly supersonic, in order for the drift to domi-
nate over the stochastic motion of individual atoms.

Fig. 1.—Line of sight, plane of sky, and direction of magnetic field. Axes
yo and zB are chosen to belong to the plane defined by the line of sight and
magnetic line.

Fig. 2.—Relative positions of the coordinate systems associated with the
magnetic line and with the angular momentum. The latter system is
obtained from the former through a rotation about axis yB, by angle �, and
a subsequent rotation about axis xJ, by angle �.
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over takes place after the granule experiences N collisions.
Suppose that this number of collisions is achieved during
time � :

N ¼
Z �

0

nuhSi	 dt ; ð11Þ

n being the density of atoms, u being the speed of gas flow,
and hSi	 being the cross section of the gas-grain interaction,
averaged over the grain’s (principal) rotation about J ,

hSi	 ¼
1

2�

Z 2�

0

Sð�; �; �; 	Þd	 ; ð12Þ

with angles �, �, �, and 	 as in Figures 2 and 3. After aver-
aging, hSi still remains time dependent, as a result of the
precession of J about B. For times � much longer than the
precession period T,

N ¼ �

T

Z T

0

nuhSi	 dt ; ð13Þ

whence

� ¼ N

nuð1=TÞ
R T

0 hSi	 dt
: ð14Þ

It can be also rewritten as

� ¼ N

nuð1=2�Þ
R 2�

0 hSi	 d�
¼ N

nuð1=2�Þ
�
hSi	

�
�

; ð15Þ

� being the angle as in Figure 2; during a precession cycle it
changes from 0 to 2�. The probability to find a granule in a
certain spin state is proportional to the time it stays there.
After averaging over the rotation about J , and after a fur-
ther averaging over the precession, the so-averaged spin
state depends on two arguments: the precession cone half-
angle � and the angle � between the magnetic line and gas
drift (Fig. 3). Thence, what the above formula gives us is the
(not yet normalized) distribution of the (doubly averaged)
spin states over � (angle � being fixed and playing the role
of parameter). What then remains is simply to normalize,
i.e., to divide � by its integrand over the solid angle. Thus,
we come to distribution

pð�Þ ¼ 1

C

1�
hSi	

�
�

; ð16Þ

with the normalization constant equal to

C ¼
Z 2�

0

d� sin �
1�

hSi	
�
�

ð17Þ

Fig. 3.—Relative orientation of the gas flow (depicted by vector f ), principal axes of the ellipsoidal granule, and its angular momentum J. In the principal
rotation state the major-inertia axisZ of the body (which is its shortest dimension) is aligned with J .
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and the average defined as

�
hSi	

�
�
¼

Z 2�

0

d�

Z 2�

0

d	 S : ð18Þ

This distribution being on our hands, the Rayleigh reduc-
tion factor is straightforward:

R ¼ 3
2 cos2 �
� �

� 1
3

� �
¼ 3

2

Z 2�

0

d� sin � pð�Þ cos2 � � 1
3

� 	
:

ð19Þ

This is where the physics ends andmathematics begins.

5. THE DISTRIBUTION OF � FOR TRIAXIAL
ELLIPSOID–SHAPED GRAINS

To make the section readable, we shall move the calcula-
tions to Appendices B and C. Beside geometry, these include
elements of the variational calculus, a heavy-duty tool sel-
dom required in astrophysics.

Distribution p(�) depends on angle � between the mag-
netic line and the gas flow and on the geometry of grain
(assuming that all particles in the cloud are alike). We shall
model the cosmic-dust particle with an ellipsoid of semiaxes
a � b � c implementing body frame ðX ;Y ;ZÞ. As we know
from x 1, in the suprathermal case the major-inertia axis and
the angular velocity are aligned with the angular momen-
tum J . Thus, vector J is pointing along Z. Another frame,
ðxB; yB; zBÞ, will be associated with the magnetic field B, axis
yB pointing along B (Fig. 2). The direction of gas flow will
be denoted by unit vector f with components ðXf ;Yf ;Zf Þ in
the body frame. The angle between f and axis Z will be
called 
 (Fig. 3). The third coordinate system needed,
ðxJ ; yJ ; zJÞ, will be associated with the angular momentum
vector so that yJ will be parallel to J and, therefore, to Z.
Then axes xJ and zJ will belong to plane ðX ;YÞ. One is free
to parameterize the rapid rotation of the granule about its
major-inertia axisZ by angle 	 between the least-inertia axis
X and the gas flow projection on the plane ðX ;Y Þ. The
suprathermal spin about J is a much faster process than the
precession of J about the magnetic line. Therefore, while
averaging over 	, one may assume the orientation of J being
unaltered. This means that during several rotations of the
granule (about J) the angle 
 between J and the gas flow
may be assumed unchanged. We shall also need angle �
between the gas flow and the magnetic field, and angle �
between the magnetic field and the angular momentum.
Finally, we shall parameterize the precession of J about B
by angle � (Fig. 2). This angle is constituted by axis zB and
axis z0 (which is the projection of J on the plane perpendicu-
lar to B). Without loss of generality, one can direct axis xB
along the gas-flow projection on the plane perpendicular to
B.

As evident from Figure 4, angles 
, �, �, and � are not
all independent. They obey the (proven in Appendix B)
relation

cos
 ¼ cos� cos� þ sin� sin � sin�: ð20Þ

The gas flow speeding by the ellipsoid defines an elliptic
curve bounding area � hatched on Figure 5 and depicted by

a thick solid line on Figure 6. Evidently,

� ¼ � qmin � qmaxj j ¼ ��min�max ; ð21Þ

qmin and qmax being the semiaxes of hatched ellipse.
Projection of � on the plane orthogonal to the gas flow will
give us the cross section S of the granule as seen by the
observer looking at it along the line of wind. As shown in
Appendix B,

S ¼ � nx cos 	 sin
þ ny sin 	 sin
þ nz cos



 

 ; ð22Þ

where the body-frame components of the auxiliary vector
n � qmin � qmax are expressed by

nx ¼ ð�minÞyð�maxÞz � ð�minÞzð�maxÞy ð23Þ

and its cyclic transpositions. The components of qmin and

Fig. 4.—Axis yB is chosen to point along the magnetic line. Axis xB is
chosen to point along the projection of the flow on the plane orthogonal to
magnetic field B. Auxiliary axis z0 points along the projection of the angular
momentum J on the said plane.

Fig. 5.—Gas flow passing by a granule tangential to its surface in certain
points. Altogether such points constitute an ellipse whose interior is
hatched. Its semiaxes are vectors qmin and qmax.
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qmax depend on the lengths a, b, c of the semiaxes and on
their orientation relative to the gas flow, i.e., on angles 	 and

. Angle 
, in its turn, depends on �, �, and �. All this will,
eventually, enable us to express S via a, b, c, �, �, �, and 	.
After that we shall average over 	 (i.e., over the principal
rotation about J) and over � (i.e., over the precession of J
about B). It will give us the distribution of equation (16)
over �, baring dependence also on a, b, c, and � as
parameters.

Calculation of components of vector n is presented in
Appendix C. Plugging these into equation (22) entails the
following expression for the cross section of the grain placed
in the flow:

S ¼ �

4
l1l2 sin2 
 cos
 sin 	 cos 	



 

" 1

b2 � �2ð Þ c2 � �1ð Þ

� 1

c2 � �2ð Þ b2 � �1ð Þ þ
1

c2 � �2ð Þ a2 � �1ð Þ

� 1

a2 � �2ð Þ c2 � �1ð Þ

þ 1

a2 � �2ð Þ b2 � �1ð Þ �
1

b2 � �2ð Þ a2 � �1ð Þ

#
; ð24Þ

where

l1 ¼ 2
sin
 cos 	

a a2 � �1ð Þ

� 	2
þ sin
 sin 	

b b2 � �1ð Þ

� 	2
þ cos


c c2 � �1ð Þ

� 	2( )�1=2

;

ð25Þ

l2 ¼ 2
sin
 cos 	

a a2 � �2ð Þ

� 	2
þ sin
 sin 	

b b2 � �2ð Þ

� 	2
þ cos


c c2 � �2ð Þ

� 	2( )�1=2

;

ð26Þ

�1;2 ¼
�Q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � 4PR

p
2P

; ð27Þ

P ¼ sin
 cos 	

a

� �2

þ sin
 sin 	

b

� �2

þ cos


c

� �2

; ð28Þ

Q ¼ �
"

sin
 cos 	

a

� �2

b2 þ c2
� �

þ sin
 sin 	

b

� �2

c2 þ a2
� �

þ cos


c

� �2

a2 þ b2
� �#

; ð29Þ

R ¼ sin
 cos 	

a

� �2

b2c2 þ sin
 sin 	

b

� �2

c2a2

þ cos


c

� �2

a2b2 : ð30Þ

What remains is to average S over 	 and � (using eq. [20])
and to plug the inverse of hhSi	i� into equations (16)–(18)
for distribution p(�). The latter will give us, through equa-
tion (19), the Rayleigh reduction factor as a function of the
granule dimensions a, b, and c and of the angle � between
the magnetic field and the gas drift. This work can be per-
formed only numerically and must be carried out with great
care. The difficulty emerges from the fact that the denomi-
nators of the terms in square brackets in equation (24) for S
vanish at certain values of the angles and at certain values of
a, b, and c. Fortunately, this is fully compensated by the
multipliers l1l2 sin2 
 cos
 sin 	 cos 	



 

 (which is most natu-
ral, for the area of a shadow cast by a smooth granule can-
not have singularities). Still, when it comes to numerics, the
mentioned issue demands much attention.

6. RESULTS AND THEIR PHYSICAL
INTERPRETATION

The results of computation are presented in Figures 7–9.
As expected, the diagrams in all three figures show the sym-
metry that corresponds to the invariance under inversion of
the magnetic field direction. For another easy checkup, we
see that on all the diagrams the Rayleigh reduction factor
vanishes in the limit of spherical grains.

We see that the cross section Lazarian alignment is inten-
sive for oblate granules (Fig. 7) and approaches its maxi-
mum in the limit of ‘‘ flat flake ’’ shape. The alignment is
maximal when the flow is parallel (or antiparallel) to the
magnetic line or is perpendicular thereto. Between these
extremes, the alignment goes through zero. To explain this,
let us consider the simple case of flat flake, and recall that
the granule, roughly speaking, ‘‘ wants ’’ to minimize its
(averaged over rotation and precession) cross section as
‘‘ seen ’’ by the flow. When the flow is parallel (or antiparal-
lel) to the magnetic line about which the grain precesses, the
average cross section is minimal if the flake has its preces-
sion cone half-angle � close to �/2 (and its square cosine
close to nil). The R factor will be negative. When the drift is
orthogonal to the magnetic field, the flake ‘‘ prefers ’’ to
minimize its average cross section by rotating at � close to
zero (with its squared cosine close to unity). The R factor
will be positive.12 Therefore, R passes through zero when

Fig. 6.—Granule in the gas flow. The thick solid line denotes cross sec-
tion� (the one that is hatched on Fig. 5). The dashed line is the cross section
S of the granule relative to the flow. Unit normals to these cross sections, n
and f , are separated by angle h.

12 Analytical treatment is possible in the cases of � ¼ 0 (when radiation-
pushed grains follow the magnetic line) and � ¼ �=2 (when the grains are
subject to Alfvénic waves or ambipolar diffusion). For details see Lazarian
& Efroimsky (1996).
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the angle takes some intermediate value, which may be dif-
ferent for different ratios of semiaxes. Contrary to the
expectations, however, this value, �oblate

0 , bares no depend-
ence on the semiaxes’ ratio.

As evident from Figure 8, the effect is much weaker in the
case of prolate grains.13 The diagrams are similar to those of
the oblate case, and the physical interpretation is the same
as above. Just as in the case of oblate geometry, the R factor
goes through zero at some value of �, which may depend on

the semiaxes’ ratio. Remarkably, in this case, too, such a
dependence is absent, and all the curves cross the horizontal
axis in the same point�prolate

0 .
Moreover, the angles �prolate

0 seem to coincide with �oblate
0

and (within the limits imposed by the calculation error)
equal arccosð1=

ffiffiffi
3

p
Þ. Such miraculous coincidence must

reflect some physical circumstances that are not evident at
first glance. A straightforward analytic proof of this ‘‘ coin-
cidence,’’ even in the simplest, oblate case, is unavailable.

The third picture, Figure 9, accounts for the general case
of a triaxial body, never addressed in the literature hitherto.
Since the triaxial case is somewhat in between the oblate
and prolate cases, it is not surprising that the diagrams
have similar form. What is surprising is that once again all
the curves seem to pass zero in the same point,
�o ¼ arccosð1=

ffiffiffi
3

p
Þ [and, for symmetry reasons, in �o ¼

�� arccosð1=
ffiffiffi
3

p
Þ]. Interestingly, the Gold alignment of

thermal dust fails at the same values of � (Dolginov &
Mytrofanov 1976). This maddening coincidence makes us
suppose that this special value, �o ¼ arccosð1=

ffiffiffi
3

p
Þ, is com-

pletely shape invariant and is independent from the supra-
thermality degree. Hence, here comes ‘‘ the arccosð1=

ffiffiffi
3

p
Þ

hypothesis ’’: no mechanical alignment of arbitrarily shaped
(not necessarily ellipsoidal) thermal or suprathermal grains
takes place, when the magnetic line and the gas drift make
angle arccosð1=

ffiffiffi
3

p
Þ or �� arccosð1=

ffiffiffi
3

p
Þ.

7. CONCLUSIONS

In the article thus far, we have investigated the cross sec-
tion mechanism of suprathermal grain alignment in a super-
sonic interstellar gas stream.While the preceding efforts had
been aimed at the cases of oblate and prolate ellipsoidal
grains, in the current paper we studied the case of triaxial
ellipsoid. We provided a comprehensive semianalytical,
seminumerical treatment that reveals the dependence of the
alignment measure (Rayleigh reduction factor R) on the
semiaxes’ ratios and on the angle � between the magnetic
line and gas drift. We provided a qualitative physical
explanation of some of the obtained results.

13 This case was studied in Lazarian et al. (1996). Our Fig. 8 is in full
agreement with Fig. 3 from that paper. Mind, however, that in Fig. 3 in the
said paper there is a slip of the pen: in fact, � was changing not from 0
through �/2 but from �/2 through �.

0 0.5 1 1.5 2 2.5 3 3.5
−0.3

−0.2

−0.1

0

0.1

0.2

R 

Fig. 7.—Rayleigh reduction factor R as a function of the angle �
between the magnetic field and the gas flow, for the case of oblate symmetri-
cal granules (‘‘ flakes ’’). The solid line corresponds to the semiaxes’ ratio
1 : 1 : 1/10, the circle line corresponds to 1 : 1 : 13, the dashed line corresponds
to 1 : 1 : 12, the asterisk line corresponds to 1 : 1 : 23, and the dot-dashed line
corresponds to 1 : 1 : 0.9.
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Fig. 8.—Same as Fig. 7, but for the case of prolate symmetrical granules
(‘‘ rods ’’). The solid line corresponds to the semiaxes’ ratio 1 : 1/10 : 1/10,
the circle line corresponds to 1 : 13 :

1
3, the dashed line corresponds to 1 : 12 :

1
2,

the asterisk line corresponds to 1 : 23 :
2
3, and the dot-dashed line corresponds

to 1 : 0.9 : 0.9.

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

R 

Fig. 9.—Same as Fig. 7, but for the case of triaxial asymmetrical gran-
ules. The solid line corresponds to the semiaxes ratio 1 : 0.9 : 0.2, the circle
line corresponds to 1 : 0.7 : 0.2, the dashed line corresponds to 1 : 0.5 : 0.2,
the asterisk line corresponds to 1 : 0.3 : 0.2, and the dot-dashed line corre-
sponds to 1 : 0.2 : 0.2.
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However, the most intriguing result poses a puzzle and
still lacks a simple physical explanation. This is the remark-
able shape independence of the critical value of �, at which
R vanishes and the cross section mechanism fails. For all

studied shapes (prolate, oblate, and triaxial with various
ratios of semiaxes), this critical value is �o ¼ arccosð1=

ffiffiffi
3

p
Þ.

We hypothesize that this special nature of the said value of
� is shape independent.

APPENDIX A

RELATIONS BETWEEN THE OBSERVER-FRAME AND BODY-FRAME EXTINCTION CROSS SECTIONS

Our goal is to compute the extinction cross sections Co
x and Co

y for the two linear polarizations orthogonal to one another
and to the line of sight, zo. These so-called observer-frame cross sections should be expressed through extinction cross sections
CX, CY, CZ appropriate to polarizations along the principal axes X, Y, Z of the granule (with X, Y, and Z standing for the
minimal-, middle-, andmaximal-inertia axes, respectively).

As an intermediate step, let us first calculate the intensities Eo2
x and Eo2

y appropriate to the linear polarizations xo and yo.
These observer-frame intensities should be expressed through the body-frame intensities E2

X , E2
Y , E2

Z appropriate to
polarizations along the principal axes. To that end, one has to perform a sequence of coordinate transformations.

The first step is to express Eo
x and Eo

y through the components EB
x;y;z of E in the coordinate system associated with the

magnetic line. In the observer’s frame, axis zo points toward the telescope, while yo may be chosen to belong to the plane
defined by zo andB. Then the magnetic line will lay in the (yo, z o)-plane. A coordinate system associated with the magnetic field
(Fig. 1) may be defined with yB pointing along B and with the x-axis remaining untouched: xB ¼ xo. The angle between B and
yo (equal to that between zB and zo) will be called �. Hence,

Eo
x ¼ EB

x ; Eo
y ¼ EB

y cos � þ EB
z sin � : ðA1Þ

The next transformation is from ðxB; yB; zBÞ to ðxJ ; yJ ; zJÞ, the latter frame being affiliated to the (precessing about B) angular
momentum J of the grain. We choose yJ to point along J , at the angular separation � from yB (Fig. 2). Vector J describes,
about B, a precession cone of half-angle �, and so does yJ about yB. An instantaneous position of the rotating frame
ðxJ ; yJ ; zJÞ, with respect to the inertial one, ðxB; yB; zBÞ, is determined by angle �. We see that a transition from ðxB; yB; zBÞ is
composed of two steps. First, we must revolve the basis about the yB axis by �. This will map axes xB and zB onto axes xJ and
z0, accordingly. Then we rotate the basis about xJ by angle �. In the course of a precession cycle of J about B, angle � remains
unaltered, while � describes the full circle. The relations between the unit vectors are straightforward:

ẑz0 ¼ ẑzB cos�� x̂xB sin� ; ðA2Þ

ẑzJ ¼ ẑz0 cos � � ŷyB sin � ¼ ẑzB cos� cos� � x̂xB sin� cos� � ŷyB sin � ; ðA3Þ

ŷyJ ¼ ŷyB cos� þ ẑz0 sin � ¼ ŷyB cos� þ ẑzB cos� sin � � x̂xB sin� sin � ; ðA4Þ

x̂xJ ¼ x̂xB cos�þ ẑzB sin� : ðA5Þ

Plugging thereof into the right-hand side of the trivial identity EB
x x̂xB þ EB

y ŷyB þ EB
z ẑzB ¼ E ¼ EJ

x x̂xJ þ EJ
y ŷyJ þ EJ

z ẑzJ yields

EB
x ¼ EJ

x cos�� EJ
y sin� sin � � EJ

z sin� cos� ; ðA6Þ

EB
y ¼ EJ

y cos� � EJ
z sin � ; ðA7Þ

EB
z ¼ EJ

x sin�þ EJ
y cos� sin � þ EJ

z cos� cos� : ðA8Þ

Lastly, we take into account the position of the grain itself, relative to frame ðxJ ; yJ ; zJÞ. As explained in footnote 1, it is legiti-
mate in the suprathermal case to assume that the major-inertia axis Z of the particle is aligned with the angular momentum,
i.e., with axis yJ (see Lazarian & Efroimsky 1999). Rotation of the granule is, thus, assumed principal and may be parameter-
ized by the angle  between the least-inertia axis X and zJ (this angle is equal to that between the middle-inertia axis Y and xJ).
This gives

EJ
x ¼ �EX sin þ EY cos ; ðA9Þ

EJ
y ¼ EZ ; ðA10Þ

EJ
z ¼ EX cos þ EY sin : ðA11Þ

Combination of all the previously presented transformations results in

Eo
x ¼ EB

x ¼ EJ
x cos�� EJ

y sin� sin � � EJ
z sin� cos�

¼ EX ð� sin cos�� cos sin� cos�Þ þ EY ðcos cos�� sin sin� cos�Þ � EZ sin� sin � ðA12Þ
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and

Eo
y ¼EB

y cos � þ EB
z sin �

¼ EJ
y cos � � EJ

z sin �
� �

cos � þ EJ
x sin�þ EJ

y cos� sin � þ EJ
z cos� cos�

� �
sin �

¼EX ð� sin sin � sin�� cos cos � sin � þ cos cos� sin � cos�Þ
þ EY ðcos sin � sin�� sin cos � sin � þ sin cos� sin � cos�Þ
þ EZðcos � cos � þ sin � cos� sin �Þ ; ðA13Þ

whence the intensities averaged over the ensemble read

Eo2
x

� �
¼ 1

4E
2
X 1þ cos2 �

� �� �
þ 1

4E
2
Y 1þ cos2 �

� �� �
þ 1

2E
2
Z sin2 �
� �

¼ 1
3 E2

X þ E2
Y þ E2

Z

� �
þ 1

3
1
2 E2

X þ E2
Y

� �
� E2

Z

� �
3
2 cos2 �
� �

� 1
3

� �
¼ 1

3 E2
X þ E2

Y þ E2
Z

� �
þ 1

3
1
2 E2

X þ E2
Y

� �
� E2

Z

� �
R ; ðA14Þ

Eo2
y

� �
¼E2

X
1
4 sin

2 � þ 1
2 cos

2 � sin2 �
� �

þ 1
4 sin

2 � cos2 �
� �� �

þ E2
Y

1
4 sin

2 � þ 1
2 cos

2 � sin2 �
� �

þ 1
4 sin

2 � cos2 �
� �� �

þ E2
Z cos2 � cos2 �

� �
þ 1

2 sin
2 � sin2 �

� �� �
¼ 1

3 E2
X þ E2

Y þ E2
Z

� �
þ 1

3 � cos2 �
� �

1
2 E2

X þ E2
Y

� �
� E2

Z

� �
3
2 cos2 �
� �

� 1
3

� �
¼ 1

3 E2
X þ E2

Y þ E2
Z

� �
þ 1

3 � cos2 �
� �

1
2 E2

X þ E2
Y

� �
� E2

Z

� �
R : ðA15Þ

Following the established tradition, we single out the so-called Rayleigh reduction factor

R ¼ 3
2 cos2 �
� �

� 1
3

� �
: ðA16Þ

In equations (A14) and (A15) averaging over  and � implies simply ð2�Þ�2 R 2�
0 d 

R 2�
0 d�, while the averaging over � remains

so far unspecified; the appropriate distribution depends on the physics of gas-grain interaction and is calculated in x 4.
Now that we have expressed the observable intensities hEo2

x i and hEo2
y i via those appropriate to polarizations along the body

axes, we can write down similar expressions interconnecting the extinction cross sections. Since the extinction is merely attenu-
ation of power from the incident beam, the contributions to cross section from the body axes’ directions will be proportional
to the mean shares of power appropriate to these three axes:

Co
x ¼ CX þ CY þ CZ

3
þ 1

3

1

2
CX þ CYð Þ � CZ

� 	
R ðA17Þ

and

Co
y ¼ CX þ CY þ CZ

3
þ 1

3
� cos2 �

� �
1

2
CX þ CYð Þ � CZ

� 	
R ; ðA18Þ

wherefrom

Co
x � Co

y ¼ 1
2 CX þ CYð Þ � CZ

� �
R cos2 � : ðA19Þ

APPENDIX B

ELLIPSOIDAL GRANULE PLACED IN A GAS FLOW

Let us calculate the angle 
 between the gas-flow direction f and the maximum-inertia axis Z of the dust particle (Fig. 4).
The dot product of the appropriate unit vectors

ŷyJ ¼ ŷyB cos� þ ẑzB sin � cos�þ x̂xB sin � sin� ðB1Þ

and

f ¼ ŷyB cos�þ ẑzB sin� ðB2Þ

leads to the formula

cos
 ¼ cos� cos� þ sin� sin � sin� : ðB3Þ
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Another important relation is evident from Figure 3:

cos
 ¼ Zfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

f þ Y 2
f þ Z2

f

q : ðB4Þ

In Figure 3, the projection of f on (X,Y ) will make an angle 	 with axisX, such that

cos 	 sin
 ¼ Xfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

f þ Y 2
f þ Z2

f

q ; sin 	 sin
 ¼ Yfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

f þ Y 2
f þ Z2

f

q : ðB5Þ

Equations (B4) and (B5) will enable us to calculate the grain’s cross section relative to the wind. The lines of gas flow, which
are tangential to the ellipsoid surface, touch this surface in points that altogether constitute a curve. It is the ellipse hatched on
Figure 5. Its area is

� ¼ � qmin � qmaxj j ¼ ��min�max ; ðB6Þ

qmin and qmax being its semiaxes. Projection of � toward the plane perpendicular to the gas flow is the cross section S of the
granule, as seen by the observer looking at it along the line of wind (Fig. 6). In other words, S is the ‘‘ shadow ’’ that the granule
casts. Evidently,

S ¼ cos �j j� ; ðB7Þ

� being the angle between the vector f of the gas flow and vector

n � qmin � qmax ðB8Þ

orthogonal to the hatched ellipse. As follows from equations (B4) and (B5),

cos �j j ¼ n x f

nj j fj j ¼
nxXf þ nyYf þ nzZf



 


�=�ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

f þ Y 2
f þ Z2

f

q
¼ �

�
nx cos 	 sin
þ ny sin 	 sin
þ nz cos



 

 : ðB9Þ

Combining the above with equation (B7), we arrive at

S ¼ � nx cos 	 sin
þ ny sin 	 sin
þ nz cos



 

 : ðB10Þ

APPENDIX C

CROSS SECTION OF A GRANULE IN GAS STREAM

Every point (X,Y,Z) belonging to the surface of the ellipsoidal grain obeys the equation

gðX ;Y ;Z; a; b; cÞ � X 2

a2
þ Y 2

b2
þ Z2

c2
¼ 1 : ðC1Þ

The points that constitute the boundary of the hatched figure � on Figure 5 obey equation (C1), along with one more relation.
That second one is the condition of flow being tangential to the surface in these points. Stated alternatively, a normal to the
ellipsoid in point (X,Y,Z) is given by vector (X/a2,Y/b2,Z/c2), and the flowmust be orthogonal to this normal:

hðX ;Y ;Z;Xf ;Yf ;Zf Þ �
XXf

a2
þ YYf

b2
þ ZZf

c2
¼ 0 : ðC2Þ

To find vectors qmin and qmax pointing from the center to the closest and the farthest points of the ellipse �, one has to employ
the variational method:

@

@X ;Y ;Z
l2 � �g� lh
� �

¼ 0 ; ðC3Þ

where l2 � X 2 þ Y 2 þ Z2 and �, l are Lagrange multipliers. The latter equation gives us the values of X, Y, Z appropriate to
the extremal distances from the origin, assuming that equations (C1) and (C2) hold. The three equations given by equation
(C3), forX,Y, andZ, yield

X ¼ lXf

2 a2 � �ð Þ ; Y ¼ lYf

2 b2 � �ð Þ ; Z ¼ lZf

2 c2 � �ð Þ ðC4Þ
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for the extremal points where vectors�qmin and�qmax end. Now plug equation (C4) into equation (C2):

h ¼ l
X 2

f

2a2 a2 � �ð Þ þ l
Y 2

f

2b2 b2 � �ð Þ þ l
Z2

f

2c2 c2 � �ð Þ ¼ 0 : ðC5Þ

This entails

�1;2 ¼
�Q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � 4PR

p
2P

; ðC6Þ

where

P � Xf

a

� �2

þ Yf

b

� �2

þ Zf

c

� �2

; ðC7Þ

Q � � Xf

a

� �2

b2 þ c2
� �

þ Yf

b

� �2

c2 þ a2
� �

þ Zf

c

� �2

a2 þ b2
� �" #

; ðC8Þ

R � Xf

a

� �2

b2c2 þ Yf

b

� �2

c2a2 þ Zf

c

� �2

a2b2 : ðC9Þ

Substitution of equation (C4) into equation (C1) will lead to the expression for l:

l2 ¼ 4
Xf

a a2 � �ð Þ

� 	2
þ Yf

b b2 � �ð Þ

� 	2
þ Zf

c c2 � �ð Þ

� 	2( )�1

: ðC10Þ

Since we have two acceptable values for �, we shall obtain four different values for l:

l1 ¼ 2
Xf

a a2 � �1ð Þ

� 	2
þ Yf

b b2 � �1ð Þ

� 	2
þ Zf

c c2 � �1ð Þ

� 	2( )�1=2

; ðC11Þ

l2 ¼ 2
Xf

a a2 � �2ð Þ

� 	2
þ Yf

b b2 � �2ð Þ

� 	2
þ Zf

c c2 � �2ð Þ

� 	2( )�1=2

; ðC12Þ

and l3 ¼ �l1, l4 ¼ �l2. Simply from looking at how � and l enter equation (C4) for extremal-point coordinates, we
see that a change of sign of l (with � fixed) corresponds merely to a switch from qmin (or qmax) to �qmin (or �qmax).
Since it is irrelevant, for our purposes, which of the two opposite farthest from the origin points to call qmax and which
to call �qmax (and, similarly, which of the two closest to the origin points to call qmin and which to call �qmax), we shall
take the positive values of l only. As a result, a substitution of �1 and l1 into equation (C4) will give us the coordinates
of one of the two farthest (from the center) points of the boundary of the hatched ellipse �. Similarly, plugging in �2
and l2 will provide us with the coordinates of one of the two closest points. The chosen farthest and closest points will
have coordinates ð�maxÞx;y;z and ð�minÞx;y;z, respectively:

ð�maxÞx ¼ l1Xf

2 a2 � �1ð Þ ; ð�maxÞy ¼
l1Yf

2 b2 � �1ð Þ ; ð�maxÞz ¼
l1Zf

2 c2 � �1ð Þ ; ðC13Þ

ð�minÞx ¼ l2Xf

2 a2 � �2ð Þ ; ð�minÞy ¼
l2Yf

2 b2 � �2ð Þ ; ð�minÞz ¼
l2Zf

2 c2 � �2ð Þ : ðC14Þ

Further substitution of these expressions into equation (23) and into its cyclic transpositions will lead to

nxXf ¼ XfYf Zf
l1l2
4

1

b2 � �2ð Þ c2 � �1ð Þ �
1

c2 � �2ð Þ b2 � �1ð Þ

� 	
; ðC15Þ

nyYf ¼ XfYf Zf
l1l2
4

1

c2 � �2ð Þ a2 � �1ð Þ �
1

a2 � �2ð Þ c2 � �1ð Þ

� 	
; ðC16Þ

nzZf ¼ XfYf Zf
l1l2
4

1

a2 � �2ð Þ b2 � �1ð Þ �
1

b2 � �2ð Þ a2 � �1ð Þ

� 	
: ðC17Þ
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Thence, the cross section S of the grain, relative to the gas-flow direction, will read

S ¼ �

4
l1l2 XfYf Zf



 

" 1

b2 � �2ð Þ c2 � �1ð Þ �
1

c2 � �2ð Þ b2 � �1ð Þ

þ 1

c2 � �2ð Þ a2 � �1ð Þ �
1

a2 � �2ð Þ c2 � �1ð Þ þ
1

a2 � �2ð Þ b2 � �1ð Þ �
1

b2 � �2ð Þ a2 � �1ð Þ

#
; ðC18Þ

where �1; 2 and l1; 2 are functions of (Xf, Yf, Zf), the latter being functions of angles 	 and 
 (while 
, in its turn,
depends on �, �, and �). All in all, the ‘‘ shadow ’’ area S turns out to be a function of angles �, �, 	, and �.

REFERENCES
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