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ABSTRACT
Symplectic N-body integrators are widely used to study problems in celestial mechanics. The most

popular algorithms are of second and fourth order, requiring two and six substeps per time step, respec-
tively. The number of substeps increases rapidly with order in time step, rendering higher order methods
impractical. However, symplectic integrators are often applied to systems in which perturbations between
bodies are a small factor v of the force due to a dominant central mass. In this case, it is possible to
create optimized symplectic algorithms that require fewer substeps per time step. This is achieved by
only considering error terms of order v and neglecting those of order v2, v3, etc. Here we devise symplec-
tic algorithms with four and six substeps per step which e†ectively behave as fourth- and sixth-order
integrators when v is small. These algorithms are more efficient than the usual second- and fourth-order
methods when applied to planetary systems.
Key words : celestial mechanics, stellar dynamics È methods : n-body simulations È methods : numerical

1. INTRODUCTION

Symplectic integrators are widely used to study problems in celestial mechanics. These integrators have two advantages
over most other algorithms. First, they exhibit no long-term build up in energy error. Second, the motion of each object about
the central body can be ““ built in,ÏÏ so that the choice of step size, q, is determined by the perturbations between bodies, whose
magnitude is a factor v smaller than the forces due to the central body (Wisdom & Holman 1991).

The most popular algorithm is the second-order symplectic integrator. The error at each step is proportional to vq3, so that
the likely error for an integration as a whole is Dvq2. The second-order method is easy to implement, consisting of only two
substeps, including one force evaluation, per time step. It is also very fast for integrations requiring moderate accuracy.

For more accurate integrations, it is better to use the fourth-order method (Forest & Ruth 1990). Here the error at each step
is proportional to vq5, although each step is computationally more expensive since it consists of six substeps. Yoshida (1990)
has developed sixth- and eighth-order symplectic integrators. However, these do not appear to be competitive in most
situations, due to the large number of substeps required.

Here we show how to construct what are e†ectively high-order (fourth, sixth, etc.) symplectic integrators that require fewer
substeps per time step than those in current use. The trick is to take into account the dependence of each error term on v when
choosing the coefficients for each substep. The algorithms are designed by eliminating error terms proportional to v up to the
desired order of the time step. Error terms proportional to v2, v3, etc., in low orders of the time step, still exist. However, in
many situations these terms are negligible, and the integrators behave as if they are of higher order than the leading error term
in q suggests.

Section 2 gives a quick review of how symplectic integrators are traditionally constructed using Lie algebra. In ° 3, we show
how to build more efficient symplectic algorithms using fewer substeps. Section 4 contains results of test integrations that
compare the new algorithms with traditional symplectic integrators.

2. SYMPLECTIC INTEGRATORS

Symplectic integrators for the N-body problem can be constructed starting from HamiltonÏs equations of motion :
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where M , N are Poisson brackets and F is a di†erential operator.
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The formal solution of equation (2) is

q(t)\ eqFq(t [ q) \
A
1 ] qF] q2F2

2
] É É É

B
q(t [ q) ,

where F2q \ F(Fq), etc.
Now suppose that we are able to split the Hamiltonian into two pieces, and so that each part of the problem can beH

A
H

B
,

solved relatively easily in the absence of the other. The solution for q becomes

q(t) \ eq(A`B)q(t [ q) , (3)

where A and B are di†erential operators related to and respectively, in the same way that F is related to H.H
A

H
B
,

The Baker-Campbell-Hausdor† (BCH) formula states that, for any noncommutative operators A and B,

exp (A) É exp (B) \ exp (C) ,

where C is a series consisting of nested commutators,

C\ A] B] 12 [A, B]] 112 [A, A, B]] 112 [B, B, A]] É É É ,

where the commutator [A, B] in general (see, for example, Yoshida 1990 or Forest & Ruth 1990). Here we\AB [ BAD 0
have used the nested commutator notation [A, B, C]\ [A, [B, C]], etc.

Hence, if we evolve q under the two parts of the Hamiltonian separately, one after the other, we have

exp (qA) É exp (qB)q(t [ q) \ exp
C
qF] q2

2
[A, B]] É É É

D
q(t [ q) . (4)

This is identical to the right-hand side of equation (3) to O(q), and so equation (4) represents a Ðrst-order integrator. Each step
of the integrator consists of two substeps, with the whole step giving an error of O(q2). Alternatively, we can say that the
integrator exactly solves a problem whose Hamiltonian is given by

Hinteg\ H ] q
2

MH
B
, H

A
N] O(q2)

(see, for example, Saha & Tremaine 1992). Provided that q is small, and remains bounded, the energy of theMH
B
, H

A
N

integrated system will always be near to that of the real system.
Other integrators can be found by combining exponential operators in such a way that they are equivalent to equation (3)

up to a given order in q. For example, we have the second-order symplectic integrator

S2A\ exp
Aq
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A
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When many integration steps are performed one after another, the exp (qA/2) terms at the end of one step and the start of
another can be combined. Hence, the second-order integrator also consists of only two substeps, except at the beginning and
the end of an integration.

Another second-order integrator is

S2B\ exp
Aq
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B
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24
[B, B, A]] É É É

D
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The distinction between S2A and S2B (which at Ðrst sight appear to be the same) will become apparent in the next section,
when we consider situations in which A and B are of di†erent magnitude.

Forest & Ruth (1990) give a fourth-order symplectic integrator with six substeps per step :
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where k \ 21@3 and c\ 2 [ k. Note that the middle three substeps move in the opposite direction to the integration as a
whole.

Higher order integrators require progressively more substeps. Yoshida (1990) gives examples of sixth- and eighth-order
integrators using 14 and 30 substeps, respectively. In the next section, we will show how to create what are e†ectively fourth-
and sixth-order integrators (and in principle, eighth-order, etc.) using fewer substeps than are required conventionally.

3. CONSTRUCTING PSEUDO-ORDER INTEGRATORS

Up to this point we have not considered the details of how H is split. Suppose that one part of the Hamiltonian is much
smaller than the other, i.e., where v> 1. Now consider the error terms in the second-order integrator ofH \H

A
] vH

B
,

equation (5) :

S2B\ exp
C
qF] vq3

12
[A, A, B][ v2q3

24
[B, B, A]] É É É

D
.

One of the O(q3) error terms is smaller than the other by a factor of v.
Similarly, for the fourth-order integrator :

S4B\ exp [qF] O(vq5) ] O(v2q5) ] O(v3q5) ] O(v4q5)] .

Some of these error terms are insigniÐcant compared to others, and yet this was not taken into account when constructing the
integrator. The only design criterion was that S4B should contain no error terms below the Ðfth power in the time step. If we
take into account the dependence of the error terms on both q and v, we can design more efficient symplectic integrators.

To construct the new integrators, we again employ the BCH formula. Adapting the expression for the BCH formula given
by Yoshida (1990), we have

exp (a1 qA) É exp (b1 vqB)
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C
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where and are constants. Additional Ðfth-order commutators are present ; however, we will only require terms thata1 b1contain either A or B once, since these are the type of error term we are seeking to eliminate.
Applying the BCH formula twice, Yoshida (1990) gives an expression for a symmetric product of three exponential

operators :

exp (b1 vqB) É exp (a1 qA) É exp (b1 vqB)

\ exp
C
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B
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B
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D
. (6)

Again we have neglected Ðfth-order terms that contain both A and B more than once. Note that there are no terms containing
even powers of the time step : Yoshida shows that this is a general property of any symmetric arrangement of exponential
operators. From now on we will consider only symmetrical integrators because of this property.

We need to extend equation (6) once more to get a pseudoÈfourth-order integrator, and twice more for a pseudoÈsixth-
order one. By substituting for in equation (6), and substituting the right-hand side of equation (6) for we geta2A b1B a1A,
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G
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FIG. 1.ÈMaximum relative energy error vs. step size for a 10,000 yr integration of the four terrestrial planets using various symplectic integrators

Finally, substituting the right-hand side of equation (7) for in equation (6), and replacing with we arrive ata1A b1B b2B,

exp (b2 vqB) É exp (a2 qA) É exp (b1 vqB) É exp (a1 qA) É exp (b1 vqB) É exp (a2 qA) É exp (b2 vqB)

\ exp
G
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6

D
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D
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D
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The Ðrst stage in converting these general expressions into speciÐc integrators is to make the coefficients of the linear A and
B terms equal to 1. This places two constraints on the values of the constants. We can then get what is e†ectively a
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FIG. 2.ÈMaximum relative energy error vs. CPU time for a 10,000 yr integration of the four terrestrial planets using various symplectic integrators

fourth-order integrator by simply eliminating the [A, A, B] term from equation (7). The leading error terms will now be
O(v2q3) and O(vq5). Provided that v is small enough, the largest error term will be O(vq5), and the integrator e†ectively will be
of fourth order in the time step. Applying these conditions, we require

a1] 2a2 \ 1 ,

2b1 \ 1 ,

1 [ 6a2(1[ a2) \ 0 , (9)

where we have used the Ðrst two lines of equation (9) in deriving the third.
Alternatively, we may construct an integrator in which each step begins by advancing instead of Unlike convention-H

B
H

A
.

al symplectic integrators, such as S2A and S2B, we cannot use the same set of coefficients when exchanging A and B. Instead,
we must derive a new set of coefficients by interchanging A and vB in equation (7) and then eliminating the new [A, A, B]
term. When we do this, the Ðrst two lines of equation (9) remain as before, but the third expression becomes

6a2[ 1 \ 0 . (10)

To get a pseudoÈsixth-order integrator, we eliminate terms containing [A, A, B] and [A, A, A, A, B]. This will produce an
extra constraining equation, so we need an extra constant. We get this by using an integrator with the form of equation (8)
instead of equation (7). The corresponding equations for the constants are

a1] 2a2\ 1 ,

2(b1] b2) \ 1 ,

1/2 [ 6a2 b1(1[ a2) \ 0 ,

1/2 [ 30a22 b1(1[ a2)2\ 0 . (11)

If we prefer an integration step that begins by advancing we can interchange A and vB in equation (8) and eliminate theH
A
,

new [A, A, B] and [A, A, A, A, B] terms. In this case, the last two lines of equation (11) become

1/4 [ 6a2 b12 \ 0 ,

7/16 [ 15a2 b12] 30a2 b14 \ 0 . (12)

The leading error terms for each of these integrators are O(v2q3) and O(vq7). The latter will be dominant if v is small enough,
so that the algorithms behave as sixth-order integrators.
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FIG. 3.ÈMaximum relative energy error vs. step size for a 10,000 yr integration of the nine planets using various symplectic integrators

3.1. PseudoÈFourth- and Sixth-Order Examples
Solving equations (9) and (10), we obtain two pseudoÈfourth-order integrators :

S4A\\exp
CqA

2
A
1 [ 1

J3

BD
É exp

AvqB
2
B

É exp
A qA
J3

B
É exp

AvqB
2
B
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2
A
1 [ 1

J3
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C
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B
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4320
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D
,

S4B\ \ exp
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6
B
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AqA

2
B
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A2vqB

3
B
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AqA

2
B
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AvqB

6
B
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C
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2880
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D
,

where the asterisk in S4A* indicates that it only behaves as a fourth-order integrator for small values of v.
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FIG. 4.ÈMaximum relative energy error vs. CPU time for a 10,000 yr integration of the nine planets using various symplectic integrators

Equations (11) and (12) give two pseudoÈsixth-order integrators :

S6A\ \ exp
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D
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McLachlan (1995) has independently derived similar solutions.
Unlike the fourth-order algorithm of Forest & Ruth (1990) and the sixth-order integrators of Yoshida (1990), the algo-

rithms above contain no substeps that move in the opposite direction to the main integration. An additional solution exists
for each of equations (9), (11), and (12) ; however, these have error terms with larger numerical coefficients than the integrators
we show here.

The same method can be used to generate a pseudoÈeighth-order integrator and so on. Each higher order will require only
two more substeps than the previous one, since only one more commutator needs to be eliminated in each case. For example,
to create a pseudoÈeighth-order integrator requires the elimination of the [A, A, A, A, A, A, B] term in addition to those that
are absent from the pseudoÈsixth-order case. However, depending on the system to be integrated, there will come a point at
which the v2q3 error term becomes the most important. In principle, one could devise another set of integrators that
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FIG. 5.ÈRelative energy error vs. time for 10,000 yr integrations of the nine planets using various symplectic integrators

eliminates terms in v2qm for small m, in addition to terms in vqm. However, achieving each new order will generally require the
elimination of more than one commutator term, so that these integrators increase in complexity much more rapidly than
those described here.

Murison & Chambers (1999) have independently derived the two fourth-order integrators above, among others, using a
symbolic algebra package. Further results from that approach will follow in another paper. We note that the pseudo-order
algorithms can be adapted to use independent time steps for each planet (cf. Saha & Tremaine 1994), or to include close
encounters (Duncan, Levison, & Lee 1998 ; Chambers 1999).

4. NUMERICAL COMPARISONS

In this section, we test the pseudoÈfourth- and sixth-order integrators derived in ° 3 against the well-known second- and
fourth-order symplectic algorithms. We use the ““ mixed-variable ÏÏ method of Wisdom & Holman (1991), in which the
Hamiltonian is divided into a Keplerian part, and an interaction part, Under each object moves on anH

K
, H

I
. H

K
,

unperturbed Keplerian orbit about the central body. Under each object remains Ðxed while receiving an impulse due toH
I
,

the gravitational perturbations of all the other objects except the central body. As suggested by Wisdom and Holman, we use
Jacobi coordinates rather than barycentric coordinates. The integrations themselves were carried out using a modiÐed version
of the Mercury integrator package (Chambers & Migliorini 1997).

The pseudo-order integrators require that the ratio In our Ðrst test, we integrate the orbits of the four innerv\ H
I
/H

K
> 1.

planets of the solar system in the absence of the outer planets. In this case vD 10~5. Figure 1 shows the results of a 10,000 yr
integration using the conventional second- and fourth-order symplectic integrators, S2B and S4B, and the pseudo-order
integrators S4B* and S6B*. For each integration, the maximum relative energy error is shown as a function of the step size.

For the second- and fourth-order integrators, the maximum energy error is roughly proportional to q2 and q4, respectively,
where q is the time step. This is what we would expect to Ðnd. For the pseudoÈfourth- and sixth-order integrators, the
maximum energy error varies as q4 and q6. That is, they behave as fourth- and sixth-order integrators, as we anticipated,
despite the fact that they contain error terms of lower order in the time step.

Using the mean relative energy error per integration instead of the maximum error gives results similar to Figure 1. The
corresponding slopes are 2.10 ^ 0.05 for S2B, 3.9^ 0.3 for S4B, 4.6^ 0.3 for S4B*, and 6.4^ 0.4 for S6B*.
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Figure 2 shows the amount of CPU time required for the integrations shown in Figure 1. For energy errors of 1 part in 106
or 108 there is not much to choose between the four algorithms. For higher levels of accuracy, S4B outperforms S2B.
However, the pseudo-integrators S4B* and S6B* do even better. At an accuracy of 1 part in 1010, they are roughly an order of
magnitude faster than the conventional second-order integrator, and 3 times faster than the fourth-order integrator. For
accuracies of better than 10~11, S6B* shows greater performance than S4B*.

The pseudoÈfourth-order integrator is more efficient than the real fourth-order integrator for two reasons. It requires fewer
substeps per time step, and it has a slightly smaller leading error term.

As a more interesting test, we integrated the whole planetary system (Mercury to Pluto) for 10,000 yr. Figure 3 shows the
energy-error results of these integrations. The behavior of S2B, S4B and S4B* is similar to that for the integrations of the
terrestrial planets. However, the energy error for S6B* varies roughly as q5 rather than q6. It is not obvious why this should be,
although the di†erence from the terrestrial-planet integration (Fig. 1) is presumably due to the fact that v is 2 orders of
magnitude larger in this case.

Figure 4 shows the CPU time required for the integrations of the nine planets. The results are similar to the integration of
the inner planets, except that S6B* has only a marginal advantage over S4B* at the highest levels of accuracy.

Since writing the original draft of this manuscript, we have become aware of the symplectic corrector method of Wisdom,
Holman, & Touma (1996), which substantially improves the efficiency of the second-order symplectic integrator. We present
the pseudo-order integrators as an alternative strategy for designing accurate algorithms. It is possible to devise other
symplectic correctors using the same approach we use in ° 3 to design the integrator kernel : that is, by considering the
dependence of the resulting error terms on v as well as q (Mikkola 1997 ; Rauch & Holman 1999). Finally, we suggest that it
may be possible to design symplectic correctors to improve the performance of pseudo-order algorithms, since the pseudo-
order methods exhibit similar high-frequency oscillations in energy error to the second- and fourth-order symplectic inte-
grators (see Fig. 5).

In summary, we conclude that the new pseudo-order integrators outperform the widely used second- and fourth-order
algorithms at all reasonable values of the energy error, for problems involving a dominant central mass.

Research at Armagh Observatory is grant-aided by the Department of Education, Northern Ireland. The test integrations
described in this paper were carried out using computers purchased on a PPARC research grant.
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