VERY LARGE ARRAY PLUS PIE TOWN ASTROMETRY OF 46 RADIO STARS

D. A. Boboltz, ${ }^{1}$ A. L. Fey, ${ }^{1}$ W. K. Puatua, ${ }^{1}$ N. Zacharias, ${ }^{1}$ M. J. Claussen, ${ }^{2}$ K. J. Johnston, ${ }^{1}{ }^{1}$ and R. A. Gaume ${ }^{1}$
Received 2006 June 27; accepted 2006 October 11

Abstract

We have used the Very Large Array, linked with the Pie Town Very Long Baseline Array antenna, to determine astrometric positions of 46 radio stars in the International Celestial Reference Frame (ICRF). Positions were obtained in the ICRF directly through phase referencing of the stars to nearby ICRF quasars whose positions are accurate at the 0.25 mas level. Radio star positions are estimated to be accurate at the 10 mas level, with position errors approaching a few milliarcseconds for some of the stars observed. Our measured positions were combined with previous measurements taken from as early as 1978 to obtain proper-motion estimates for all 46 stars with average uncertainties of $\approx 1.7 \mathrm{mas} \mathrm{yr}^{-1}$. We compared our radio star positions and proper motions with the Hipparcos Catalogue data and found consistency in the reference frames produced by each data set on the 1σ level, with errors of ~ 2.7 mas per axis for the reference frame orientation angles at our mean epoch of 2003.78. No significant spin is found between our radio data frame and the Hipparcos Celestial Reference Frame, with the largest rotation rates of +0.55 and $-0.41 \mathrm{mas} \mathrm{yr}^{-1}$ around the x - and z-axes, respectively, with 1σ errors of 0.36 mas yr^{-1}. Thus, our results are consistent with a nonrotating Hipparcos frame with respect to the ICRF.

Key words: astrometry - binaries: close - radio continuum: stars - techniques: interferometric

1. INTRODUCTION

The current realization of the International Celestial Reference Frame (ICRF) is defined by the positions of 212 extragalactic objects derived from Very Long Baseline Interferometry (VLBI) observations (Ma et al. 1998; Gambis 1999, p. 87; Fey et al. 2004). This VLBI realization of the ICRF is currently the International Astronomical Union (IAU)-sanctioned fundamental celestial reference frame. At optical wavelengths, the Hipparcos Catalogue (Perryman et al. 1997) now serves as the primary realization of the celestial reference frame. The link between the Hipparcos Catalogue and the ICRF was accomplished through a variety of ground-based and space-based efforts (Kovalevsky et al. 1997), with the highest weight given to VLBI observations of 12 radio stars by Lestrade et al. (1999). The standard error of the alignment was estimated to be 0.6 mas at epoch 1991.25, with an estimated error in the system rotation of $0.25{\mathrm{mas} \mathrm{yr}^{-1} \text { per axis (Kovalevsky }}^{\text {a }}$ et al. 1997).

At the epoch of our most recent radio star observations (2004.80) the formal error associated with the Hipparcos-ICRF frame link is estimated to be ~ 3.4 mas. Due to errors in the proper motions, the random position errors of individual Hipparcos stars increased from ~ 1 mas in 1991 to ~ 12 mas at the time of our most recent observations. Such uncertainties in the frame rotation and the astrometry of individual sources can combine to seriously limit the ability to align high-resolution multiwavelength data on a particular source, thus restricting the astrophysical interpretation of potentially interesting objects.

In this paper we present X-band radio observations of 46 radio stars using the Very Large Array (VLA) in the A configuration linked by fiber optic transmission line to the Very Long Baseline Array (VLBA) antenna located in Pie Town, New Mexico. Both the VLA and VLBA are maintained and operated by the National Radio Astronomy Observatory. ${ }^{3}$ The VLA plus Pie Town

[^0](VLA+PT) link (Claussen et al. 1999) is a valuable tool for radio star astrometry because it provides the high sensitivity of the VLA with nearly twice the resolution of the VLA A configuration alone for high-declination sources.

The work described herein represents a continuation of a longterm program (since 1978) to obtain accurate astrometric radio positions and proper motions for ~ 50 radio stars that can be used to connect the current ICRF to future astrometric satellite (e.g., Gaia and Space Interferometry Mission PlanetQuest) reference frames. These stars were originally selected to be observable at both optical and radio wavelengths, with detectability in the radio being the primary limitation. Quiescent radio flux densities are on the order of $1-10 \mathrm{mJy}$, with occasional flares of emission $>100 \mathrm{mJy}$. All of the stars have been observed with Hipparcos and have spectral types ranging from A to M and visual magnitudes ranging from 0.58 to 10.80 . Many of the stars are RS CVn and Algol-type binary systems. Early observations in the program were used to connect the radio frame to the FK4 optical reference frame (Johnston et al. 1985), while later observations were used to link the radio-based ICRF to the Hipparcos optical reference frame (Johnston et al. 2003).

The astrometric positions derived from the three epochs of VLA+PT observations are combined with previous VLA (Johnston et al. 1985, 2003), VLA+PT (Boboltz et al. 2003), and MultiElement Radio Linked Interferometer Network (MERLIN; Fey et al. 2006) positions to determine updated proper motions, $\mu_{\alpha \cos \delta}$ and μ_{δ}, for all 46 sources. Position and proper-motion results obtained for the 46 stars are compared with the corresponding Hipparcos values as a measure of the accuracy of our results. Finally, position and proper-motion differences relative to the Hipparcos values are computed in order to determine the current (epoch 2004) spin alignment of the Hipparcos frame with respect to the ICRF.

2. OBSERVATIONS AND REDUCTION

The VLA+PT radio observations occurred over three epochs: 2003 June 6-7, 2003 September 9-10, and 2004 October 1819. For the first two epochs, designated experiments AF399a and AF399b, observations occurred over a 24 hr period with 24 and

FIg. 1.-Distribution of the 46 observed radio stars plotted on an Aitoff equal-area projection of the celestial sphere. The dotted line represents the Galactic equator.

26 stars observed, respectively. The third epoch was observed over a 10 hr period in which 10 stars not detected in the previous two sessions were reobserved. Data for all three epochs were recorded in dual circular polarization using two adjacent 50 MHz bands centered on rest frequencies of 8460.1 and 8510.1 MHz . The sky distribution of the 46 radio stars detected is shown in Figure 1.

Observations were conducted in a phase-referencing mode by rapidly switching between the star and a nearby ICRF reference source. Listed in Table 1 are the radio star targets along with their associated ICRF calibrators. Also shown in the table are the ICRF positions for each calibrator, the ICRF category, and the separation in degrees between the target and the reference source. Positions for the ICRF reference sources are estimated to be accurate to the 0.25 mas level. For the first two epochs, typical targetcalibrator scans lasted 8 minutes with a 2 minute cycle time (90 s on the star and 30 s on the calibrator) for approximately four cycles per scan. For the third epoch the cycle times were increased to 3 minutes (140 s on the star and 40 s on the calibrator) with scans lasting 12 minutes, again resulting in four cycles per scan. Over the course of an experiment, five to eight scans were recorded for each target-calibrator pair over a wide range of hour angles. In addition, periodic scans on the source 3C 48 were performed for the purpose of absolute flux density calibration.

Data were calibrated using the standard routines within the Astronomical Image Processing System (AIPS). The absolute flux density scale was established using the values calculated by AIPS for 3C 48 with the proper $u-v$ restrictions applied. Phase calibration was accomplished through transfer of the phases from the reference source to the target source data. From the calibrated data, images were produced for each scan on each target for a total of up to eight images per star per epoch of observations. Average rms noise levels in the CLEANed images from the individual scans were $0.1,0.09$, and $0.04 \mathrm{mJy} \mathrm{beam}^{-1}$ for AF399a, AF399b, and AJ315, respectively. Recall that scan times were increased in experiment AJ315 to increase the probability of detecting previously undetected stars from AF399a and AF399b. In addition, a summed image of each star was produced that included data from all scans on the source. Two-dimensional (2-D) Gaussian functions were fit to the emission in the images using
the AIPS task JMFIT. For the three experiments, detection rates were 19 out of 24 stars (79%) in AF399a, 21 out of 26 (81%) in AF399b, and 7 out of 11 (64\%) in AJ315. For comparison, the detection rate for our VLA + PT radio star pilot study (Boboltz et al. 2003) was 19 out of 19 stars (100\%); however, there we purposely tried to select radio stars with high flux densities based on previous observations.

3. RESULTS AND DISCUSSION

3.1. Source Positions

Final estimation of source positions and uncertainties was performed outside of AIPS using the results of the 2-D Gaussian fits to the images produced from the observations. Table 2 lists the source positions and associated uncertainties determined for the 46 stars detected over the three epochs. Note that the star HD 193793 appears twice, since it was observed in two experiments, AF399a and AJ315. Because the radio stars were directly referenced to ICRF quasar calibrators using the phase-referencing technique, the positions listed in Table 2 are given directly in the ICRF. Also denoted in the last two columns of Table 2 are the epoch of observation and the number of successful/total observations (scans), which were used in the estimation of position uncertainties for each source. Final positions reported in Table 2 are simply the JMFIT least-squares position estimates from the summed image of each star. The 1σ position uncertainties listed in the table were estimated using a procedure similar to that described in Fey et al. (2006) and summarized below, depending on whether the source was detected in one or more individual scans.

If a given star was detected in more than one scan, then an rms scatter in the JMFIT scan-based positions weighted by the JMFIT formal errors was computed. The uncertainty in the position reported for each star is then the root sum square (rss) of this weighted rms (wrms) position scatter and the value of the JMFIT least-squares formal uncertainty from the fit to the summed image of the source. The addition of the wrms position scatter was meant to conservatively account for possible systematic errors introduced into the positions by factors such as the variable troposphere. The position uncertainties listed in Table 2 represent the resulting rss values for sources detected in more than one observation.

TABLE 1
Observed Radio Stars and Corresponding ICRF Calibrator Sources

Star Name	Hipparcos Number	ICRF Calibrator	ICRF Category ${ }^{\text {a }}$	$\alpha(\mathrm{J} 2000.0)^{\text {b }}$	$\delta(\mathrm{J} 2000.0)^{\text {b }}$	Separation (deg)
UV Psc...................	5980	0119+041	C	012156.861699	042224.73436	2.7
HD 8357	6454	0119+041	C	012156.861699	042224.73436	3.1
RZ Cas	13133	0224+671	D	022850.051459	672103.02926	2.9
B Per	20070	0355+508	O	035929.747262	505750.16151	3.0
HD 283572	20388	0430+289	N	043337.829860	290555.47701	2.7
T Tau N..................	20390	0409+229	N	041243.666851	230505.45299	4.2
HD 37017	26233	0539-057	D	054138.083384	-05 4149.42839	2.0
ϵ Ori	26311	0539-057	D	054138.083384	-054149.42839	4.7
α Ori.....................	27989	0529+075	C	053238.998531	073243.34586	5.6
SV Cam..................	32015	0615+820	D	062603.006188	820225.56764	0.6
HD 50896	33165	0646-306	C	064814.096441	-30 4419.65940	6.9
R CMa...................	35487	0727-115	O	073019.112472	-114112.60048	5.4
54 Cam...................	39348	0749+540	D	075301.384573	535259.63716	3.7
TY Pyx...................	44164	0919-260	O	092129.353874	-261843.38604	5.1
XY UMa	44998	0850+581	D	085441.996385	575729.93928	4.1
IL Hya....................	46159	0919-260	O	092129.353874	-261843.38604	2.6
DH Leo	49018	0953+254	O	095649.875361	251516.04977	1.0
HU Vir....................	59600	1145-071	C	114751.554036	-07 2441.14109	6.5
DK Dra	59796	1053+704	C	105653.617492	701145.91585	6.7
RS CVn.................	64293	$1315+346$	C	131736.494189	342515.93266	2.1
HR 5110..................	66257	$1315+346$	C	131736.494189	342515.93266	4.4
RV Lib	71380	1430-178	C	143257.690643	-18 0135.24885	0.7
δ Lib	73473	1511-100	C	151344.893444	-10 1200.26435	3.6
AG Dra	78512	$1642+690$	D	164207.848514	685639.75640	4.4
$\sigma^{2} \mathrm{CrB}$.	79607	1611+343	C	161341.064249	341247.90909	0.4
α Sco	80763	1622-253	O	162546.891639	-25 2738.32688	1.3
WW Dra.................	81519	1637+574	D	163813.456293	572023.97918	3.4
29 Dra	85852	1749+701	D	174832.840231	700550.76882	4.3
Z Her.....................	87965	1743+173	D	174535.208181	172001.42341	3.7
9 Sgr......................	88469	1817-254	C	182057.848685	-25 2812.58456	4.0
FR Sct....................	90115	1817-254	C	182057.848685	-25 2812.58456	12.8
BY Dra...................	91009	1823+568	D	182407.068372	565101.49088	5.3
HR 7275.................	94013	1954+513	D	195542.738273	513148.54623	7.3
U Sge	94910	1923+210	C	192559.605370	210626.16218	2.3
V444 Cyg...............	100214	2005+403	O	200744.944851	402948.60414	2.9
HD 193793	100287	2005+403	O	200744.944851	402948.60414	4.1
V729 Cyg...............	101341	2005+403	O	200744.944851	402948.60414	4.7
HD 199178	103144	2037+511	D	203837.034755	511912.66269	7.4
ER Vul...................	103833	2113+293	D	211529.413455	293338.36694	3.4
VV Cep..................	108317	2229+695	D	223036.469725	694628.07698	7.0
RT Lac	108728	$2200+420$	O	220243.291377	421639.97994	1.6
AR Lac....................	109303	$2200+420$	O	220243.291377	421639.97994	3.6
IM Peg	112997	2251+158	O	225357.747932	160853.56089	0.7
SZ Psc....................	114639	2318+049	C	232044.856598	051349.95266	3.1
λ And	116584	2351+456	O	235421.680266	455304.23653	3.0
HD 224085	117915	2337+264	O	234029.029462	264156.80485	3.8

${ }^{\text {a }}$ ICRF source category (Ma et al. 1998; Gambis 1999, p. 87; Fey et al. 2004): D, defining; C, candidate; O, other; N, new in ICRF extension 1.
${ }^{\mathrm{b}}$ ICRF extension 1 source positions (Gambis 1999, p. 87). Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

If the source was detected in only a single scan, then the reported position uncertainties in Table 2 were estimated by taking the rss of the JMFIT formal position error from the summed image and the average value of the wrms position scatter for all sources with multiple observations in the particular epoch in which the star was observed. There were only three such sources, UV Psc (HIP 5980), SV Cam (HIP 32015), and HR 7275 (HIP 94013), in which the average scatter had to be used, one source in each experiment. For the three experiments, AF399a, AF399b, and AJ315, the average wrms values of position scatter for stars detected in more than one observation were $7.3,12.1$, and 6.3 mas in $\alpha \cos \delta$ and $9.4,11.1$, and 9.9 mas in δ, respectively. Again, this rss step
was meant to conservatively account for possible systematic errors in the measured positions.

Table 3 compares the uncertainties in our VLA+PT positions with the corresponding Hipparcos uncertainties and lists the rss combined uncertainties for each star. The Hipparcos uncertainties have been updated to the epoch of our observations using the reported Hipparcos proper-motion errors. Our errors compare favorably with the Hipparcos position errors updated to our epoch. The average and median position uncertainties for all 46 stars detected in the VLA+PT observations are 10.2 and 9.2 mas, respectively, in $\alpha \cos \delta$ and 11.5 and 11.3 mas, respectively, in δ. The average and median Hipparcos position uncertainties are slightly

TABLE 2
Radio Star Positions Estimated from the VLA+PT Data

Star Name	Hipparcos Number	$\alpha(\mathrm{J} 2000.0)^{\mathrm{a}}$	$\delta(\mathrm{J} 2000.0)$	Epoch	$N_{\text {obs }}{ }^{\text {b }}$
UV Psc.	5980	$011655.1402 \pm 0.0012(\pm 0.018)$	064842.242 ± 0.020	2003.6933	1/5
HD 8357	6454	$012256.7799 \pm 0.0003(\pm 0.004)$	072510.126 ± 0.006	2003.4356	6/6
RZ Cas	13133	$024855.5126 \pm 0.0015(\pm 0.008)$	693803.563 ± 0.010	2003.4356	5/6
B Per	20070	$041814.6323 \pm 0.0005(\pm 0.005)$	501743.617 ± 0.004	2003.4356	6/7
HD 283572	20388	$042158.8519 \pm 0.0015(\pm 0.019)$	281806.379 ± 0.019	2003.6933	3/5
T Tau N..	20390	$042159.4364 \pm 0.0007(\pm 0.009)$	193206.394 ± 0.011	2003.6933	5/5
HD 37017	26233	$053521.8672 \pm 0.0006(\pm 0.009)$	-04 2939.013 ± 0.009	2003.6933	6/7
є Ori	26311	$053612.8130 \pm 0.0005(\pm 0.007)$	-01 1206.924 ± 0.012	2003.4356	6/7
α Ori	27989	$055510.3097 \pm 0.0004(\pm 0.005)$	072425.461 ± 0.012	2003.4356	7/7
SV Cam.	32015	$064119.1451 \pm 0.0061(\pm 0.012)$	821601.905 ± 0.012	2003.4356	1/7
HD 50896	33165	$065413.0405 \pm 0.0023(\pm 0.032)$	-235542.023 ± 0.025	2003.6933	3/6
R CMa.	35487	$071928.2380 \pm 0.0003(\pm 0.004)$	-162343.564 ± 0.007	2004.8000	3/5
54 Cam.	39348	$080235.7663 \pm 0.0004(\pm 0.003)$	571624.834 ± 0.007	2003.6933	5/6
TY Pyx.	44164	$085942.7071 \pm 0.0008(\pm 0.011)$	-274858.911 ± 0.012	2004.8000	3/5
XY UMa	44998	$090955.9135 \pm 0.0029(\pm 0.025)$	542917.044 ± 0.019	2003.6933	3/6
IL Hya.	46159	$092449.0001 \pm 0.0006(\pm 0.008)$	-23 4934.859 ± 0.023	2004.8000	5/6
DH Leo	49018	$100001.6464 \pm 0.0008(\pm 0.011)$	243309.822 ± 0.014	2003.6933	3/5
HU Vir	59600	$121320.6889 \pm 0.0007(\pm 0.010)$	-09 0446.862 ± 0.016	2004.8000	4/6
DK Dra	59796	$121541.4825 \pm 0.0032(\pm 0.014)$	723304.221 ± 0.009	2003.6933	5/6
RS CVn.	64293	$131036.8927 \pm 0.0005(\pm 0.006)$	355605.658 ± 0.005	2003.4356	7/8
HR 5110.	66257	$133447.8330 \pm 0.0006(\pm 0.007)$	371056.655 ± 0.003	2003.6933	$4 / 5$
RV Lib	71380	$143548.4130 \pm 0.0005(\pm 0.008)$	-1802 11.598 ± 0.011	2003.4356	5/5
δ Lib.	73473	$150058.3328 \pm 0.0005(\pm 0.007)$	-083108.248 ± 0.011	2003.6933	3/6
AG Dra	78512	$160141.0080 \pm 0.0030(\pm 0.018)$	664810.110 ± 0.021	2003.4356	7/8
$\sigma^{2} \mathrm{CrB}$.	79607	$161440.7704 \pm 0.0007(\pm 0.009)$	335130.688 ± 0.005	2003.6933	4/4
α Sco	80763	$162924.4568 \pm 0.0005(\pm 0.007)$	-262555.286 ± 0.014	2003.4356	5/5
WW Dra.	81519	$163903.9889 \pm 0.0014(\pm 0.010)$	604158.551 ± 0.013	2003.6933	6/7
29 Dra	85852	$173241.1473 \pm 0.0033(\pm 0.013)$	741338.567 ± 0.015	2003.6933	7/7
Z Her..	87965	$175806.9733 \pm 0.0009(\pm 0.013)$	150822.179 ± 0.013	2003.4356	6/6
9 Sgr.	88469	$180352.4445 \pm 0.0009(\pm 0.012)$	-24 2138.651 ± 0.022	2003.6933	4/5
FR Sct	90115	$182322.7919 \pm 0.0008(\pm 0.011)$	-124051.833 ± 0.017	2003.4356	3/5
BY Dra.	91009	$183355.8399 \pm 0.0013(\pm 0.012)$	514307.724 ± 0.014	2003.6933	7/7
HR 7275.	94013	$190825.7296 \pm 0.0016(\pm 0.014)$	522532.351 ± 0.016	2004.8000	1/6
U Sge	94910	$191848.4085 \pm 0.0002(\pm 0.003)$	193637.724 ± 0.004	2003.4356	6/6
V444 Cyg............................	100214	$201932.4209 \pm 0.0010(\pm 0.011)$	384353.954 ± 0.008	2003.6933	4/6
HD $193793{ }^{\text {c }}$	100287	$202027.9752 \pm 0.0004(\pm 0.004)$	435116.271 ± 0.002	2003.4356	5/6
HD 193793	100287	$202027.9747 \pm 0.0004(\pm 0.004)$	435116.268 ± 0.003	2004.8000	4/4
V729 Cyg.	101341	$203222.4221 \pm 0.0008(\pm 0.009)$	411818.919 ± 0.011	2003.6933	5/5
HD 199178	103144	$205353.6634 \pm 0.0014(\pm 0.015)$	442311.089 ± 0.009	2003.4356	6/6
ER Vul.	103833	$210225.9309 \pm 0.0013(\pm 0.018)$	274826.485 ± 0.017	2003.6933	6/6
VV Cep.	108317	$215639.1425 \pm 0.0019(\pm 0.013)$	633731.997 ± 0.011	2003.4356	7/7
RT Lac	108728	$220130.7601 \pm 0.0019(\pm 0.021)$	435325.734 ± 0.012	2003.6933	7/7
AR Lac.	109303	$220840.8027 \pm 0.0003(\pm 0.003)$	454432.281 ± 0.004	2003.4356	8/8
IM Peg	112997	$225302.2589 \pm 0.0002(\pm 0.003)$	165028.168 ± 0.003	2004.8000	6/6
SZ Psc.	114639	$231323.7901 \pm 0.0001(\pm 0.001)$	024031.689 ± 0.004	2003.4356	6/6
λ And	116584	$233733.8999 \pm 0.0009(\pm 0.010)$	462727.808 ± 0.007	2003.6933	6/6
HD 224085	117915	$235504.2039 \pm 0.0004(\pm 0.005)$	283801.356 ± 0.018	2003.4356	7/7

[^1]larger in $\alpha \cos \delta$ at 12.0 and 10.3 mas, respectively, and slightly smaller in δ at 10.3 and 8.8 mas, respectively.

Listed in columns (9) and (10) of Table 3 are the offsets between our VLA+PT positions and the Hipparcos positions updated to the epoch of our observations. These offsets, $\Delta_{\text {Hipp.-radio }}$, are also shown as a function of right ascension in Figure 2 and as a function of declination in Figure 3. Stars observed in the three different experiments are represented by different symbols. Error bars are the combined uncertainties reported in columns (7) and (8) of Table 3. The unweighted mean offsets between our positions and the updated Hipparcos positions are 6.1 mas in $\Delta \alpha \cos \delta$ and
0.7 mas in $\Delta \delta$, with standard deviations (σ) of 18.6 and 25.1 mas in $\Delta \alpha \cos \delta$ and $\Delta \delta$, respectively. Unweighted standard errors of the means (σ_{M}) are then 2.7 mas in $\Delta \alpha \cos \delta$ and 3.7 mas in $\Delta \delta$. Similarly, the mean offsets between the VLA+PT and Hipparcos positions, weighted by the square of the rss combined uncertainties, are 2.3 and -0.7 mas with weighted rms errors of 14.3 and 17.4 mas in $\Delta \alpha \cos \delta$ and $\Delta \delta$, respectively.

The unweighted average and median arc length between our measurements and the Hipparcos positions is 24.2 and 15.7 mas, respectively, with a standard deviation of 20.5 mas. There are two stars for which the arc length is greater than 75 mas: DH Leo

TABLE 3
Radio Star Position Uncertainties and Offsets from Hipparcos

Star Name (1)	Hipparcos Number (2)	Radio Errors (mas)		$\begin{aligned} & \text { Hipparcos ERRORs }{ }^{\mathrm{a}} \\ & \text { (mas) } \end{aligned}$		$\begin{aligned} & \text { Combined Errors }{ }^{\mathrm{b}} \\ & \text { (mas) } \end{aligned}$		$\begin{gathered} \Delta_{\text {Hipp.-radio }} \\ \text { (mas) } \end{gathered}$	
		$\alpha \cos \delta$ (3)	δ (4)	$\alpha \cos \delta$ (5)	$\begin{gathered} \delta \\ (6) \end{gathered}$	$\alpha \cos \delta$ (7)	δ (8)	$\alpha \cos \delta$ (9)	$\begin{gathered} \delta \\ (10) \end{gathered}$
UV Psc....	5980	17.8	20.3	13.9	11.2	22.6	23.2	6.6	-51.4
HD 8357	6454	4.4	5.8	12.0	8.1	12.7	10.0	2.2	7.4
RZ Cas.	13133	8.0	10.1	5.0	6.8	9.5	12.2	7.0	-1.3
B Per ...	20070	5.1	4.4	14.3	11.5	15.2	12.3	25.1	-7.5
HD 283572	20388	18.7	19.5	19.2	13.9	26.8	23.9	-22.8	23.2
T Tau N..	20390	10.0	11.0	23.0	19.8	25.0	22.6	35.2	-10.9
HD 37017	26233	9.2	9.4	10.6	6.9	14.0	11.6	3.3	-3.6
ϵ Ori	26311	6.9	12.1	9.8	5.4	12.0	13.3	12.1	10.0
α Ori..	27989	5.3	12.0	28.1	17.8	28.5	21.5	26.5	4.3
SV Cam..	32015	12.4	12.1	11.6	14.3	16.9	18.7	-5.1	-19.2
HD 50896	33165	32.2	25.4	5.3	8.1	32.6	26.7	35.9	29.8
R CMa..	35487	3.6	6.6	9.4	9.6	10.0	11.7	8.3	26.3
54 Cam.	39348	2.8	6.7	9.5	7.7	9.9	10.2	-9.2	1.7
TY Pyx..	44164	10.6	12.3	6.4	7.5	12.3	14.4	2.8	3.6
XY UMa	44998	25.9	19.1	21.1	14.4	33.5	23.9	34.6	-27.7
IL Hya..	46159	8.4	23.2	9.9	7.5	13.0	24.4	34.2	-11.2
DH Leo.	49018	11.2	13.6	13.7	10.0	17.7	16.9	-49.5	-95.6
HU Vir.	59600	9.7	16.2	13.4	9.8	16.6	18.9	22.4	-20.9
DK Dra.	59796	8.5	9.1	6.8	6.2	10.9	11.0	0.0	-12.7
RS CVn.	64293	6.1	4.9	10.7	8.8	12.3	10.1	13.7	12.0
HR 5110	66257	6.9	3.0	5.5	4.8	8.8	5.6	5.4	-6.9
RV Lib	71380	7.6	11.3	21.5	17.3	22.8	20.7	4.8	-3.8
δ Lib..	73473	8.6	10.7	10.5	9.9	13.6	14.6	-18.5	41.5
AG Dra	78512	17.9	21.0	11.2	13.2	21.2	24.8	11.3	10.3
$\sigma^{2} \mathrm{CrB}$.	79607	8.7	4.8	10.5	13.7	13.7	14.5	9.0	-4.6
α Sco	80763	7.2	13.9	24.4	16.4	25.5	21.5	19.6	-3.2
WW Dra.	81519	10.0	12.6	18.9	18.9	21.4	22.8	34.2	18.6
29 Dra..	85852	13.0	15.2	10.6	11.5	16.8	19.1	-20.3	48.2
Z Her...	87965	13.0	13.0	8.4	7.8	15.5	15.1	19.5	-20.7
9 Sgr .	88469	12.5	21.6	14.7	8.8	19.3	23.3	7.2	16.7
FR Sct.	90115	11.0	17.0	19.8	14.1	22.6	22.0	-23.0	74.1
BY Dra..	91009	12.5	13.6	8.7	9.4	15.2	16.6	7.7	3.2
HR 7275.	94013	14.5	16.0	6.7	6.4	15.9	17.3	44.4	12.7
U Sge .	94910	2.9	3.6	6.6	7.1	7.2	8.0	-5.1	-4.6
V444 Cyg..	100214	13.1	8.1	8.4	8.4	15.6	11.7	-6.0	-4.0
HD 193793.	100287	3.9	2.6	7.1	6.0	8.1	6.5	-14.3	-4.6
HD 193793.	100287	4.1	2.3	7.9	6.7	8.9	7.0	-10.4	-4.9
V729 Cyg.	101341	8.7	10.9	33.6	29.5	34.7	31.4	26.4	29.8
HD 199178	103144	14.8	8.8	9.4	7.5	17.5	11.5	-18.7	-8.1
ER Vul...	103833	17.6	17.4	7.0	7.0	19.0	18.8	8.1	-12.7
VV Cep..	108317	12.8	10.7	7.7	5.6	15.0	12.1	7.5	-3.9
RT Lac...	108728	20.8	12.0	10.3	11.0	23.2	16.3	1.1	-11.5
AR Lac..	109303	3.0	4.0	5.6	6.5	6.4	7.6	2.0	9.1
IM Peg ..	112997	3.4	3.3	8.3	7.7	8.9	8.4	-5.6	-1.6
SZ Psc....	114639	1.4	4.3	14.9	9.9	15.0	10.8	5.4	-12.8
λ And	116584	9.5	6.5	4.0	6.2	10.3	9.0	-1.2	14.0
HD 224085	117915	4.6	17.6	9.7	6.8	10.7	18.9	13.2	5.9

${ }^{\text {a }}$ Hipparcos uncertainties updated to the epoch of our observations using the Hipparcos proper-motion uncertainties.
${ }^{\mathrm{b}}$ Combined uncertainties are the rss of our VLA + PT errors and the corresponding Hipparcos errors at epoch.
(HIP 49018) and FR Sct (HIP 90115). For both stars the declination offset is the dominant source of the difference from Hipparcos; however, neither source has an unusually large uncertainty in declination, 13.6 mas for DH Leo and 17.0 mas for FR Sct. In addition, neither source has a particularly large proper motion in declination, -31.8 and $-2.9{\text { mas } \mathrm{yr}^{-1} \text { for DH Leo and FR Sct, }}_{\text {Let }}$ respectively.

DH Leo is an RS CVn binary, as are many of the radio stars on our list. The system is flagged as a component solution in the

Hipparcos Double/Multiple Systems Annex (Perryman et al. 1997). The annex lists a tertiary component with a separation of 220 ± 20 mas with respect to DH Leo at a position angle of 46° at epoch 1991.25. DH Leo is also listed in the Fourth Catalog of Interferometric Measurements of Binary Stars (Hartkopf et al. 2001) as multiple system CHARA 145. The catalog lists eight measurements of the component separations made with speckle interferometry from epoch 1989.2271 through 1994.2209. Over this 5 yr period the components moved through angles from 38°

Fig. 2.-Differences between the Hipparcos positions updated to the epoch of our observations and our VLA+PT measured positions as a function of source right ascension α for the 46 radio stars observed. Differences in $\alpha \cos \delta$ are plotted in (a), and differences in δ are plotted in (b). Error bars are the rss combined uncertainties listed in Table 3.
to 28° and relative separations of 216-283 mas. It is therefore possible that the 96 mas offset in declination between our radio position and the Hipparcos position updated to our epoch is consistent with the orbital motion within the system.

FR Sct, on the other hand, is a single pulsating variable star. The Hipparcos Catalogue solution contains no entry in the Double/ Multiple Systems Annex (Perryman et al. 1997). In addition, there are no entries for FR Sct in the Washington Double Star Cata\log (Mason et al. 2001) or the Fourth Catalog of Interferometric Measurements of Binary Stars (Hartkopf et al. 2001). Therefore, the 74 mas offset in declination between our radio position and the corresponding Hipparcos position cannot, as yet, be explained as motion due to a secondary component. It may be that FR Sct is a good candidate for future speckle interferometry observations in light of the offset we have found.

3.2. Source Proper Motions

The positions of the 46 radio stars from our VLA+PT observations were combined with previous VLA (Johnston et al. 1985, 2003), VLA+PT (Boboltz et al. 2003), and MERLIN (Fey et al. 2006) positions to determine updated proper motions, $\mu_{\alpha \cos \delta}$ and μ_{δ}, for all 46 sources. Although the data cover a long time range, 1978-2004, the sampling is not sufficient to enable the determination of source parallaxes. We therefore used the Hipparcos values to remove the effects of parallax in our computed proper motions for all 46 stars. Source proper motions were computed using a linear least-squares fit to the data weighted by the position errors for each observation. Position errors for the previous VLA-only observations were estimated to be 30 mas in both $\alpha \cos \delta$ and δ (Johnston et al. 2003), and we have adopted these values. Position errors for previous VLA+PT and MERLIN observations are reported in Boboltz et al. (2003) and Fey et al. (2006), respectively. The proper motions derived from the combined data are listed in Table 4. Also reported are the number of positions used to determine the proper motion ($N_{\text {pos }}$) and the total time span between the earliest position measurement and the most recent measurement $(\Delta \tau)$. There are three stars, T Tau N (HIP 20390), HD 199178 (HIP 100287),

Fig. 3.-Differences between the Hipparcos positions updated to the epoch of our observations and our VLA+PT measured positions as a function of source declination δ for the 46 radio stars observed. Differences in $\alpha \cos \delta$ are plotted in (a), and differences in δ are plotted in (b). Error bars are the rss combined uncertainties listed in Table 3.
and IM Peg (HIP 112997), for which the time baseline is short, $\Delta \tau<4$ yr. These three stars are recent additions to our observing list and were not part of the original VLA radio star program (Johnston et al. 1985, 2003).

Table 5 compares the uncertainties in our radio-derived proper motions with the corresponding Hipparcos proper-motion uncertainties and lists the rss combined uncertainties for each star. Listed in columns (9) and (10) of Table 5 are the differences between our VLA + PT proper motions and the corresponding Hipparcos values. These differences are also shown in Figures 4-8. Figures 4 and 5 show the proper-motion differences $\Delta \mu_{\alpha \cos \delta}$ and $\Delta \mu_{\delta}$ as a function of right ascension (Fig. 4) and declination (Fig. 5), respectively. The three different symbols represent stars observed in the three corresponding VLA+PT experiments. Error bars are the combined uncertainties reported in columns (7) and (8) of Table 5. Average and median radio-derived uncertainties for the 46 stars are 1.74 and 1.62 mas yr^{-1}, respectively, in $\mu_{\alpha \cos \delta}$ and 1.79 and $1.65 \mathrm{mas} \mathrm{yr}^{-1}$, respectively, in μ_{δ}. If we exclude the three stars for which $\Delta \tau<4 \mathrm{yr}$, these values drop slightly to 1.59
 comparison, the average Hipparcos proper-motion uncertainties are 0.98 and $0.85 \mathrm{mas} \mathrm{yr}^{-1}$ in $\mu_{\alpha \cos \delta}$ and 0.84 and $0.72 \mathrm{mas} \mathrm{yr}^{-1}$ in μ_{δ} for the same 46 stars.

The unweighted average differences between our proper motions and the Hipparcos values are $-0.75{\text { mas } \mathrm{yr}^{-1} \text { in } \Delta \mu_{\alpha} \cos \delta}$ and 0.21 mas yr^{-1} in $\Delta \mu_{\delta}$, with standard deviations of 2.17 and 2.38 mas yr $^{-1}$ in $\Delta \mu_{\alpha \cos \delta}$ and $\Delta \mu_{\delta}$, respectively. Unweighted standard errors of the means $\left(\sigma_{M}\right)$ are thus $0.35{\text { mas } \mathrm{yr}^{-1} \text { in } \Delta \mu_{\alpha \cos \delta}, ~}_{\text {con }}$ and 0.32 mas yr $^{-1}$ in $\Delta \mu_{\delta}$. Similarly, the mean offsets between the radio and Hipparcos proper motions, weighted by the square of the rss combined uncertainties, are -0.57 and -0.15 mas $_{\text {yr }}{ }^{-1}$ with weighted rms errors of 1.77 and $2.26{\mathrm{mas} \mathrm{yr}^{-1} \text { in } \Delta \mu_{\alpha \cos \delta}, ~}_{\text {a }}$ and $\Delta \mu_{\delta}$, respectively.

Figures 6, 7, and 8 plot the differences, $\Delta \mu_{\delta}$ versus $\Delta \mu_{\alpha \text { cos } \delta}$, for the experiments AF399a, AF399b, and AJ315, respectively. Again, the error bars represent the rss combined uncertainties. The figures show that many of the differences between the radio proper motions and those of Hipparcos are within the 1σ error

TABLE 4
Radio Star Proper Motions

Star Name	Hipparcos Number	$\begin{gathered} \mu_{\alpha \cos \delta} \\ \left(\operatorname{mas~yr}^{-1}\right) \end{gathered}$	$\begin{gathered} \mu_{\delta} \\ \left(\operatorname{mas~yr}^{-1}\right) \end{gathered}$	$N_{\text {pos }}{ }^{\text {a }}$	$\begin{aligned} & \Delta \tau^{\mathrm{b}} \\ & (\mathrm{yr}) \end{aligned}$
UV Psc..............................	5980	84.87 ± 2.36	23.62 ± 2.45	2	14.6893
HD 8357	6454	96.17 ± 1.17	234.07 ± 1.20	3	18.3986
RZ Cas	13133	3.20 ± 1.51	36.55 ± 1.60	5	17.1376
B Per.	20070	43.64 ± 1.22	-58.02 ± 1.21	7	21.0065
HD 283572	20388	9.98 ± 1.94	-29.00 ± 1.90	2	18.6563
T Tau N.	20390	7.20 ± 4.15	-4.84 ± 5.17	2	2.7484
HD 37017	26233	1.07 ± 1.51	2.63 ± 1.51	4	18.6563
ϵ Ori	26311	-2.12 ± 1.66	-0.91 ± 1.78	3	17.2176
α Ori.	27989	23.98 ± 1.04	10.07 ± 1.15	4	21.0175
SV Cam.	32015	41.99 ± 1.90	-150.02 ± 1.81	2	17.1376
HD 50896	33165	-3.70 ± 2.06	6.58 ± 1.94	3	20.0172
R CMa..	35487	166.19 ± 1.64	-139.38 ± 1.66	2	18.5820
54 Cam..	39348	-38.80 ± 1.24	-56.95 ± 1.39	4	21.2672
TY Pyx..	44164	-45.68 ± 1.49	-46.24 ± 1.52	3	21.1239
XY UMa	44998	-50.19 ± 2.24	-182.06 ± 2.04	2	17.3953
IL Hya.	46159	-42.65 ± 1.98	-30.58 ± 2.39	2	15.7960
DH Leo	49018	-231.88 ± 1.71	-31.78 ± 1.77	2	18.6583
HU Vir	59600	-13.22 ± 1.99	1.33 ± 2.15	2	15.7960
DK Dra	58796	-9.55 ± 1.79	-23.80 ± 1.68	2	18.6583
RS CVn.	64293	-50.53 ± 1.39	23.17 ± 1.28	4	21.0145
HR 5110	66257	85.40 ± 1.07	-9.06 ± 0.99	5	21.2752
RV Lib	71380	-20.71 ± 1.79	-18.24 ± 1.86	2	17.2176
δ Lib.	73473	-66.16 ± 1.51	-6.19 ± 1.62	6	17.4753
AG Dra	78512	-9.68 ± 2.03	-7.61 ± 2.13	2	17.2176
$\sigma^{2} \mathrm{CrB}$.	79607	-267.19 ± 1.31	-86.86 ± 1.22	4	21.2752
α Sco	80763	-10.06 ± 1.07	-23.81 ± 1.24	3	21.0175
WW Dra.	81519	22.16 ± 1.26	-60.40 ± 1.32	3	20.0172
29 Dra	85852	-66.85 ± 1.89	33.88 ± 1.92	2	17.4753
Z Her.	87965	-26.82 ± 1.67	77.48 ± 1.65	2	19.7596
9 Sgr..	88469	0.48 ± 1.62	-3.94 ± 1.85	2	20.0642
FR Sct	90115	0.00 ± 1.66	-2.88 ± 1.74	2	19.8065
BY Dra.	91009	186.49 ± 1.60	-325.12 ± 1.65	2	20.0172
HR 7275.	94013	-102.73 ± 1.81	-55.05 ± 1.83	2	18.5820
U Sge.	94910	0.62 ± 1.62	2.50 ± 1.64	2	18.3986
V444 Cyg.	100214	-5.67 ± 1.22	-7.62 ± 1.13	3	20.0172
HD 193793	100287	-4.72 ± 0.66	-1.89 ± 0.64	9	22.3819
V729 Cyg..........................	101341	-2.79 ± 1.44	-5.35 ± 1.48	4	20.0642
HD 199178	103144	27.12 ± 6.14	-1.03 ± 3.51	3	2.4907
ER Vul.	103833	89.78 ± 2.39	5.24 ± 2.35	2	14.6893
VV Cep	108317	-4.95 ± 1.64	-2.27 ± 1.61	2	19.8065
RT Lac	108728	57.54 ± 1.72	20.69 ± 1.52	2	21.2672
AR Lac.	109303	-52.43 ± 1.02	46.77 ± 1.07	7	21.0095
IM Peg	112997	-18.62 ± 1.34	-27.76 ± 4.22	2	3.8551
SZ Psc.	114639	18.64 ± 1.41	27.60 ± 1.43	3	19.8065
λ And	116584	158.77 ± 1.47	-423.50 ± 1.45	2	21.2752
HD 224085	117915	576.20 ± 1.45	34.27 ± 1.67	2	21.0095

${ }^{\text {a }}$ Number of position measurements used in the weighted least-squares fit to estimate the proper motion.
${ }^{\mathrm{b}}$ Time in years between first and last position epochs.
bars, with the most obvious exception being the star T Tau N in Figure 7. As mentioned previously, T Tau N is one of the stars for which the time baseline is short at only 2.75 yr . In addition, T Tau N is known to be gravitationally bound to the T Tau S binary system with a detected acceleration in its motion (Johnston et al. 2004). With only two positions for T Tau N covering such a short time period it is impossible to fit for any accelerations in the motion of the source with our data alone.

The two stars mentioned previously as having large declination differences relative to Hipparcos, FR Sct and DH Leo, appear in Figures 6 and 7, respectively. Although the proper motions in declination (see Table 4) are not very large, the proper-motion differences in declination relative to Hipparcos are fairly large at
 shows that both stars have only two position measurements separated by long time intervals between epochs. It is possible that the two stars have an acceleration component in declination that is as yet undetected in the linear fits to our limited data.

3.3. Radio/Optical Frame Alignment

Our radio star observations are on the ICRF, while the data taken from the Hipparcos Catalogue are on the Hipparcos Celestial Reference Frame (HCRF). The Hipparcos positions used here have been updated to the epoch of the individual radio star's mean position using the Hipparcos proper motions. Following the formulation of Walter \& Sovers (2000), the optical minus radio

TABLE 5
Radio Star Proper-Motion Uncertainties and Offsets from Hipparcos

Star Name (1)	Hipparcos Number (2)	Radio Errors (mas)		Hipparcos Errors (mas)		$\begin{gathered} \text { Combined Errors }{ }^{\mathrm{a}} \\ \text { (mas) } \end{gathered}$		$\begin{gathered} \Delta \mu_{\text {Hipp.-radio }} \\ \text { (mas) } \end{gathered}$	
		$\mu_{\alpha \cos \delta}$ (3)	μ_{δ} (4)	$\mu_{\alpha \cos \delta}$ (5)	μ_{δ} (6)	$\mu_{\alpha \cos \delta}$ (7)	μ_{δ} (8)	$\mu_{\alpha \cos \delta}$ (9)	μ_{δ} (10)
UV Psc..	5980	2.36	2.45	1.14	0.92	2.63	2.62	0.03	4.39
HD 8357	6454	1.17	1.20	0.98	0.66	1.53	1.37	1.78	3.34
RZ Cas.	13133	1.51	1.60	0.41	0.56	1.56	1.69	0.31	-0.92
B Per.	20070	1.22	1.21	1.17	0.94	1.69	1.53	-2.95	-1.59
HD 283572	20388	1.94	1.90	1.57	1.14	2.50	2.22	2.46	-1.55
T Tau N..	20390	4.15	5.17	1.88	1.62	4.55	5.42	-8.25	7.64
HD 37017.	26233	1.51	1.51	0.86	0.56	1.73	1.61	-1.05	1.69
ϵ Ori	26311	1.66	1.78	0.80	0.44	1.85	1.84	-3.61	0.15
α Ori	27989	1.04	1.15	2.30	1.46	2.52	1.86	-3.35	-0.79
SV Cam..	32015	1.90	1.81	0.95	1.17	2.12	2.16	0.41	2.89
HD 50896	33165	2.06	1.94	0.43	0.66	2.10	2.05	0.16	1.83
R CMa...	35487	1.64	1.66	0.69	0.71	1.78	1.80	0.82	-2.97
54 Cam..	39348	1.24	1.39	0.78	0.63	1.46	1.53	-0.52	2.13
TY Pyx..	44164	1.49	1.52	0.47	0.55	1.56	1.62	-1.69	-1.44
XY UMa.	44998	2.24	2.04	1.73	1.18	2.83	2.36	-2.11	2.61
IL Hya..	46159	1.98	2.39	0.73	0.55	2.11	2.46	-5.14	1.62
DH Leo.	49018	1.71	1.77	1.11	0.81	2.04	1.95	2.49	4.33
HU Vir	59600	1.99	2.15	0.99	0.72	2.22	2.27	-1.52	1.76
DK Dra	59796	1.79	1.68	0.56	0.51	1.88	1.75	-0.35	1.31
RS CVn..	64293	1.39	1.28	0.88	0.72	1.64	1.47	-1.39	1.68
HR 5110.	66257	1.07	0.99	0.45	0.39	1.16	1.06	0.70	0.75
RV Lib.	71380	1.79	1.86	1.76	1.42	2.51	2.34	-0.17	0.62
δ Lib..	73473	1.51	1.62	0.86	0.81	1.74	1.81	0.04	-2.79
AG Dra	78512	2.03	2.13	0.92	1.08	2.23	2.39	-3.50	-2.14
$\sigma^{2} \mathrm{CrB}$.	79607	1.31	1.22	0.86	1.12	1.57	1.66	-0.72	0.02
α Sco .	80763	1.07	1.24	2.00	1.34	2.27	1.83	0.10	-0.60
WW Dra.	81519	1.26	1.32	1.55	1.55	2.00	2.04	-2.60	-2.03
29 Dra	85852	1.89	1.92	0.87	0.94	2.08	2.14	-0.03	-3.19
Z Her...	87965	1.67	1.65	0.69	0.64	1.81	1.77	-3.19	3.23
9 Sgr...	88469	1.62	1.85	1.20	0.72	2.02	1.99	-0.16	-2.23
FR Sct.	90115	1.66	1.74	1.62	1.15	2.32	2.09	1.76	-3.35
BY Dra..	91009	1.60	1.65	0.71	0.77	1.75	1.82	-0.13	-0.23
HR 7275..	94013	1.81	1.83	0.49	0.47	1.87	1.89	1.69	-0.78
U Sge .	94910	1.62	1.64	0.54	0.58	1.71	1.74	-2.32	-0.10
V444 Cyg..	100214	1.22	1.13	0.69	0.69	1.40	1.33	0.91	2.06
HD 193793	100287	0.66	0.64	0.58	0.49	0.88	0.80	-2.00	-4.13
V729 Cyg..	101341	1.44	1.48	2.75	2.41	3.10	2.83	0.64	0.48
HD 199178	103144	6.14	3.51	0.77	0.61	6.19	3.57	-2.11	-2.68
ER Vul..	103833	2.39	2.35	0.57	0.57	2.45	2.42	0.35	0.12
VV Cep...	108317	1.64	1.61	0.63	0.46	1.76	1.68	1.53	-0.86
RT Lac.	108728	1.72	1.52	0.84	0.90	1.91	1.77	-4.62	1.55
AR Lac...	109303	1.02	1.07	0.46	0.53	1.12	1.20	0.23	-0.46
IM Peg	112997	1.34	4.22	0.61	0.57	1.47	4.26	0.05	-1.11
SZ Psc.....	114639	1.41	1.43	1.22	0.81	1.87	1.64	2.35	-0.17
λ And	116584	1.47	1.45	0.33	0.51	1.51	1.54	0.53	1.54
HD 224085	117915	1.45	1.67	0.79	0.56	1.65	1.76	-0.45	-2.04

${ }^{\text {a }}$ Combined uncertainties are the rss of our radio errors and the corresponding Hipparcos errors.
position differences are used to determine the relative reference frame orientation angles $\epsilon_{x}, \epsilon_{y}$, and ϵ_{z} around the x-, y-, and z-axes, respectively:
$\left(\alpha_{\text {HCRF }}-\alpha_{\text {ICRF }}\right) \cos \delta=\epsilon_{x} \sin \delta \cos \alpha+\epsilon_{y} \sin \delta \sin \alpha-\epsilon_{z} \cos \delta$,

$$
\begin{equation*}
\delta_{\text {HCRF }}-\delta_{\text {ICRF }}=-\epsilon_{x} \sin \alpha+\epsilon_{y} \cos \alpha . \tag{1}
\end{equation*}
$$

Similar formulae are used to obtain the relative spin difference (ω_{x}, ω_{y}, and ω_{z}) of the reference frames using the proper-motion
differences between the Hipparcos Catalogue and our data. The combined rss formal errors of the Hipparcos and our data are used for weighted least-squares adjustments. The weighted mean epoch of our data is 2003.78, and the results, with the sign conventions from equations (1) and (2), are presented in Table 6. The first two rows of the table list the orientation (mas), spin (mas yr^{-1}), and corresponding formal errors for each axis using all 46 stars observed. The HCRF excludes stars flagged for possible multiplicity in the Hipparcos Catalogue. Thirteen out of the 46 radio stars we observed have a multiplicity flag in the Hipparcos Catalogue; thus, we have excluded them in the second solution

Fig. 4.-Differences between the Hipparcos proper motions and our radioderived proper motions as a function of source right ascension α for the 46 radio stars observed. Differences in $\mu_{\alpha \cos \delta}$ are plotted in (a), and differences in μ_{δ} are plotted in (b). Error bars are the rss combined uncertainties listed in Table 5.
presented in Table 6 (labeled "33 stars"). Finally, two stars out of the remaining 33 nonmultiple stars showed large postfit residuals in the 33 star rotation solution. These stars are T Tau N, a known multiple, and RZ Cas. A third solution was produced excluding these two stars, and the results are presented in Table 6 (labeled " 31 stars").

Because ground-based catalogs often contain systematic errors, especially as a function of declination, preliminary solutions for the orientation angles included an offset in the declination parameter in addition to the three rotation terms. However, these solutions showed the offset term to be insignificant, and the results

Fig. 5.-Differences between the Hipparcos proper motions and our radioderived proper motions as a function of source declination δ for the 46 radio stars observed. Differences in $\mu_{\alpha \cos \delta}$ are plotted in (a), and differences in μ_{δ} are plotted in (b). Error bars are the rss combined uncertainties listed in Table 5.

Fig. 6.-Offsets between the Hipparcos and radio proper motions, $\Delta \mu_{\alpha \cos \delta}$ vs. $\Delta \mu_{\delta}$, for the stars observed in VLA + PT experiment AF399a. Error bars are the rss combined uncertainties listed in Table 5.
presented in Table 6 are based on a model including only the three rotation terms. The reduced χ^{2} was found to be 1.14 for the position orientation solution and 1.10 for the proper-motion spin solution. This is an indication of small systematic errors, and the addition of an arbitrary rss error of about 5 mas per coordinate per star will bring the χ^{2} for the solutions close to 1.0 . This additional error was not included in the solutions presented in Table 6.

Updating the Hipparcos-ICRF frame alignment discussion presented in Boboltz et al. (2003), the formal, predicted error on the frame alignment at our 2003.78 mean epoch, which is 12.53 yr after the mean Hipparcos epoch of 1991.25 , is 3.1 mas. The

Fig. 7.-Offsets between the Hipparcos and radio proper motions, $\Delta \mu_{\alpha \cos \delta}$ vs. $\Delta \mu_{\delta}$, for the stars observed in VLA + PT experiment AF399b. Error bars are the rss combined uncertainties listed in Table 5.

Fig. 8.-Offsets between the Hipparcos and radio proper motions, $\Delta \mu_{\alpha \cos \delta}$ vs. $\Delta \mu_{\delta}$, for the stars observed in VLA + PT experiment AJ315. Error bars are the rss combined uncertainties listed in Table 5.
largest frame orientation angle we find is for the z-axis with Hipparcos - radio $=-3.2$ mas, with a formal error of 2.9 mas and thus only a 1σ (non)significance. The orientations of the Hipparcos and ICRF frames are even better for the x - and y-axes at the 2003.78 mean epoch. For the two alternate solutions with 33 and 31 stars, the frame orientations are slightly larger for the z-axis than the 46 star solution and slightly smaller for the x - and y-axes. All rotation angles are still within the 1σ formal errors. In addition, the weighted mean offsets between the Hipparcos and VLA+PT positions mentioned in $\S 3.1$ (2.3 and -0.7 mas) are consistent with the frame orientation angles and their formal errors.

With the formal errors of the Hipparcos data increasing over time and the radio data errors decreasing, it is now appropriate to look, for the first time, at the derivative of the frame orientation, i.e., the proper-motion spin alignment of the frames. We find formal errors in the spin alignment of only about $0.36 \mathrm{mas} \mathrm{yr}^{-1}$ per axis for the 46 star solution. This is a factor of 2 improvement over our previous results (Boboltz et al. 2003) and is approaching the original Hipparcos-ICRF link error of 0.25 mas yr $^{-1}$. Our independent observations show the Hipparcos frame to be non-
rotating with respect to the extragalactic ICRF, with the largest rotation rates being +0.55 and $-0.41 \mathrm{mas} \mathrm{yr}^{-1}$ around the x - and z-axes, respectively. These rates are consistent with zero on the 1.6 and 1.1σ levels, respectively. For the 33 and 31 star solutions, the formal errors are larger at approximately $0.44{\text { mas } \mathrm{yr}^{-1} \text {. }}_{\text {. }}$ The rotation rate about the x-axis was nominally larger with respect to the 46 star solution at $\omega_{x} \approx 0.62$ mas yr^{-1}, while the rotation
 All rotation rates are consistent with zero on a 1.5σ level or better. The weighted mean proper motion differences mentioned in § 3.2 $\left(-0.57\right.$ and $-0.15{\mathrm{mas} \mathrm{yr}^{-1}}$) are also consistent with these frame rotation rates and their formal errors.

4. CONCLUSIONS

We have determined the astrometric positions for 46 radio stars using the VLA + PT configuration. The positions presented here, with uncertainties on the order of 10 mas or better, are consistent with our earlier VLA + PT results (Boboltz et al. 2003) and represent a factor of 3 improvement over prior VLA-only results (Johnston et al. 1985, 2003). Stellar positions from Hipparcos are degrading with time due to errors in the Hipparcos proper motions on the order of $1{\mathrm{mas} \mathrm{yr}^{-1} \text { and due to unmodeled rota- }}_{\text {a }}$ tions in the frame with respect to the extragalactic objects estimated to be $0.25{\mathrm{mas} \mathrm{yr}^{-1} \text { per axis. Taking into account these }}^{2}$ uncertainties, for many of the stars in our list our VLA+PT positions are better than the corresponding Hipparcos positions at epoch. The proper motions derived from our VLA + PT positions combined with previous VLA (Johnston et al. 1985, 2003), VLA+PT (Boboltz et al. 2003), and MERLIN (Fey et al. 2006) positions have errors that are on the order of, and in some cases are better than, those obtained from Hipparcos.

We have also compared our radio star data with the Hipparcos Catalogue data for positions and proper motions and find consistency in the reference frames produced by each data set on the 1σ level. Errors of ~ 2.7 mas per axis were computed for the reference frame orientation angles at our mean epoch of 2003.78 and $\sim 0.36 \mathrm{mas} \mathrm{yr}^{-1}$ per axis for relative spin between the frames. Our independent observations show the Hipparcos frame to be nonrotating with respect to the extragalactic ICRF, with the largest rotation rates being +0.55 and -0.41 mas yr^{-1} around the x - and z-axes, respectively. Future papers will reveal whether this trend has any significance. An independent study based on optical images of extragalactic reference frame sources in combination with dedicated astrograph observations is in preparation (M. I. Zacharias \& N. Zacharias 2007). For now, the HCRF orientation and spin are consistent with the ICRF on the 1σ level of our observations of 46 radio stars.

TABLE 6
Hipparcos minus Radio Data Reference Frame Orientation and Spin

Solution	$\begin{gathered} \epsilon_{x} \\ \text { (mas) } \end{gathered}$	$\begin{gathered} \epsilon_{y} \\ \text { (mas) } \end{gathered}$	$\begin{gathered} \epsilon_{z} \\ \text { (mas) } \end{gathered}$	$\begin{gathered} \omega_{x} \\ \left(\mathrm{mas}_{\mathrm{yr}} \mathrm{yr}^{-1}\right) \end{gathered}$	$\left(\operatorname{mas} \mathrm{yr}^{-1}\right)$	$\begin{gathered} \omega_{z} \\ \left(\text { mas yr }{ }^{-1}\right. \text {) } \end{gathered}$
All 46 stars.....	-0.4	0.1	-3.2	0.55	0.02	-0.41
1σ..	2.6	2.6	2.9	0.34	0.36	0.37
33 stars ${ }^{\text {a }}$.	-1.3	1.2	-2.9	0.61	-0.05	-0.32
$1 \sigma \ldots$	2.9	2.8	3.2	0.43	0.43	0.46
31 stars $^{\text {b }}$	-1.7	0.9	-2.4	0.62	-0.01	-0.30
$1 \sigma \ldots$	3.1	2.9	3.3	0.43	0.43	0.46

[^2]
REFERENCES

Boboltz, D. A., Fey, A. L., Johnston, K. J., Claussen, M. J., de Vegt, C., Zacharias, N., \& Gaume, R. A. 2003, AJ, 126, 484
Claussen, M. J., Beresford, R., Sowinski, K., \& Ulvestad, J. S. 1999, BAAS, 31, 1498
Fey, A. L., Boboltz, D. A., Gaume, R. A., Johnston, K. J., Garrington, S. T., \& Thomasson, P. 2006, AJ, 131, 1084
Fey, A. L., et al. 2004, AJ, 127, 3587
Gambis, D., ed. 1999, 1998 IERS Annu. Rep. (Paris: Obs. Paris)
Hartkopf, W. I., Mason, B. D., Wycoff, G. L., \& McAlister, H. A. 2001, Fourth Catalog of Interferometric Measurements of Binary Stars (Washington: USNO), http://ad.usno.navy.mil/wds/int4.html
Johnston, K. J., de Vegt, C., Florkowski, D. R., \& Wade, C. M. 1985, AJ, 90, 2390

Johnston, K. J., de Vegt, C., \& Gaume, R. A. 2003, AJ, 125, 3252
Johnston, K. J., Fey, A. L., Gaume, R. A., Claussen, M. J., \& Hummel, C. A. 2004, AJ, 128, 822
Kovalevsky, J., et al. 1997, A\&A, 323, 620
Lestrade, J.-F., Preston, R. A., Jones, D. L., Phillips, R. B., Rogers, A. E. E., Titus, M. A., Rioja, M. J., \& Gabuzda, D. C. 1999, A\&A, 344, 1014
Ma, C., et al. 1998, AJ, 116, 516
Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., \& Worley, C. E. 2001, AJ, 122, 3466
Perryman, M. A. C., et al. 1997, A\&A, 323, L49
Walter, H. G., \& Sovers, O. J., eds. 2000, Astrometry of Fundamental Catalogues: The Evolution from Optical to Radio Reference Frames (Berlin: Springer)

[^0]: US Naval Observatory, Washington, DC, USA.
 ${ }^{2}$ National Radio Astronomy Observatory, Socorro, NM, USA.
 ${ }^{3}$ The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

[^1]: Note.-Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
 ${ }^{\text {a }}$ Second error (in parentheses) is in arcseconds.
 ${ }^{\mathrm{b}}$ Number of successful/total observations (scans).
 ${ }^{\text {c }}$ HD 193793 was observed in experiments AF399a and AJ315.

[^2]: ${ }^{\text {a }}$ Solution excluding 13 stars with Hipparcos multiplicity flags.
 ${ }^{\text {b }}$ Solution excluding 13 Hipparcos multiples plus T Tau N and RZ Cas.

