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Introduction

The series of resolutions passed by the International Astronomical Union at its General Assemblies
in 1997 and 2000 are the most significant set of international agreements in positional astronomy in
several decades and arguably since the Paris conference of 1896. The approval of these resolutions
culminated a process — not without controversy — that began with the formation of an inter-
commission Working Group on Reference Systems at the 1985 IAU General Assembly in Delhi.

The resolutions came at the end of a remarkable decade for astrometry, geodesy, and dynamical
astronomy. That decade witnessed the successes of the Hipparcos satellite and the Hubble Space
Telescope (in both cases, after apparently fatal initial problems), the completion of the Global
Positioning System, 25-year milestones in the use of very long baseline interferometry (VLBI) and
lunar laser ranging (LLR) for astrometric and geodetic measurements, the discovery of Kuiper
Belt objects and extra-solar planets, and the impact of comet Shoemaker-Levy 9 onto Jupiter.
At the end of the decade, interest in near-Earth asteroids and advances in sensor design were
motivating plans for rapid and deep all-sky surveys. Significant advances in theory also took place,
facilitated by inexpensive computer power and the Internet. Positional and dynamical astronomy
were enriched by a deeper understanding of chaos and resonances in the solar system, advances in
the theory of the rotational dynamics of the Earth, and increasingly sophisticated models of how
planetary and stellar systems form and evolve. It is not too much of an exaggeration to say that
as a result of these and similar developments, the old idea that astrometry is an essential tool of
astrophysics was rediscovered. The TAU resolutions thus came at a fortuitous time, providing a
solid framework for interpreting the modern high-precision measurements that are revitalizing so
many areas of astronomy.

This circular is an attempt to explain these resolutions and provide guidance on their imple-
mentation. This publication is the successor to USNO Circular 163 (1982), which had a similar
purpose for the TAU resolutions passed in 1976, 1979, and 1982. Both the 1976-1982 resolutions
and those of 1997-2000 provide the specification of the fundamental astronomical reference system,
the definition of time scales to be used in astronomy, and the designation of conventional models
for Earth orientation calculations (involving precession, nutation, and Universal Time). It will
certainly not go unnoticed by readers familiar with Circular 163 that the current publication is
considerably thicker. This reflects both the increased complexity of the subject matter and the
wider audience that is addressed.

Of course, the IAU resolutions of 1997-2000 did not arise in a vacuum. Many people participated
in various TAU working groups, colloquia, and symposia in the 1980s and 1990s on these topics,
and some important resolutions were in fact passed by the IAU in the early 1990s. Furthermore,
any set of international standards dealing with such fundamental matters as space and time must
to some extent be based on, and provide continuity with, existing practice. Therefore, many of the
new resolutions carry “baggage” from the past, and there is always the question of how much of this
history (some of it quite convoluted) is important for those who simply wish to implement the latest
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iv INTRODUCTION

recommendations. Material in this circular generally avoids detailed history in an effort to present
the most succinct and least confusing picture possible. However, many readers will be involved with
modifying existing software systems, and some mention of previous practice is necessary simply to
indicate what needs to be changed. A limited amount of background material also sometimes aids
in understanding and provides a context for the new recommendations. The reader should be
aware that the presentation of such material is selective and no attempt at historical completeness
is attempted.

It must be emphasized that the resolutions described here affect astronomical quantities only at
the level of some tens of milliarcseconds or less at the present epoch. And, despite misinformation to
the contrary, familiar concepts such as the equinox and sidereal time have not been discarded. The
largest systematic change is due to the new rate of precession, which is 0.3 arcsecond per century
less than the previous (1976) rate; the change affects some types of astronomical coordinates and
sidereal time. Astronomical software applications that work acceptably well now at the arcsecond
or 0.1-arcsecond level (which would include most telescope control systems) will continue to work
at that level, even when used with new sources of reference data, such as the Hipparcos, Tycho-2,
or 2MASS star catalogs or the VCS3 radio source catalog. Applications that are independent of
the rotation of the Earth, such as those for differential (small-field) astrometry, are largely unaf-
fected. For these kinds of systems, changes to computer code that implement the new resolutions
are recommended as a long-term goal, to maintain standardization of algorithms throughout the
astronomical community, but are not an immediate practical necessity. (Perhaps some readers will
stop right here and file this circular on the shelf!)

Overview of the Resolutions

The TAU resolutions described in this circular cover a range of fundamental topics in positional
astronomy:

e Relativity Resolutions passed in 2000 provide the relativistic metric tensors for reference
systems with origins at the solar system barycenter and the geocenter, and the transformation
between the two systems. While these are mostly of use to theorists — for example, in the
formulation of accurate models of observations — they provide a proper relativistic framework
for current and future developments in precise astrometry, geodesy, and dynamical astronomy.
(See Chapter 1.)

e Time Scales Resolutions passed in 1991 and 2000 provide the definitions of various kinds
of astronomical time and the relationships between them. Included are time scales based on
the Systeme International (SI) second (“atomic” time scales) as well as those based on the
rotation of the Earth. (See Chapter 2.)

e The Fundamental Astronomical Reference System A resolution passed in 1997 es-
tablished the International Celestial Reference System (ICRS), a high precision coordinate
system with its origin at the solar system barycenter and “space fixed” (kinematically non-
rotating) axes. The resolution included the specification of two sets of benchmark objects
and their coordinates, one for radio observations (VLBI-measured positions of pointlike ex-
tragalactic sources) and one for optical observations (Hipparcos-measured positions of stars).
These two sets of reference objects provide the practical implementation of the system and
allow new observations to be related to it. (See Chapter 3.)
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e Precession and Nutation Resolutions passed in 2000 provided a new precise definition
of the celestial pole and endorsed a specific theoretical development for computing its instan-
taneous motion. The celestial pole to which these developments refer is called the Celestial
Intermediate Pole (CIP); the instantaneous equatorial plane is orthogonal to the CIP. There
are now new precise algorithms for computing the pole’s position on the celestial sphere at
any time, in the form of new expressions for precession and nutation. (See Chapter 5.)

e Earth Rotation A resolution passed in 2000 establishes new reference points, one on the
celestial sphere and one on the surface of the Earth, for the measurement of the rotation of the
Earth about its axis. The new points are called, respectively, the Celestial Intermediate Origin
(CIO) and the Terrestrial Intermediate Origin (TIO). Both lie in the instantaneous equatorial
plane. The rotation of the Earth is simply the geocentric angle, 6, between these two points, a
linear function of Universal Time (UT1). The CIO is analogous to the equinox, the reference
point on the celestial sphere for sidereal time. Unlike the equinox, however, the CIO has no
motion along the instantaneous equator, and unlike sidereal time, 6 is not “contaminated”
by precession or nutation. The new CIO-TIO-based Earth rotation paradigm thus allows a
clean separation of Earth rotation, precession, and nutation in the transformation between
terrestrial and celestial reference systems. (See Chapter 6.)

This circular also includes a brief description of the de facto standard solar system model,
produced and distributed by the Jet Propulsion Laboratory (see Chapter 4). This model, labeled
DE405/LE405, provides the positions and velocities of the nine major planets and the Moon with
respect to the solar system barycenter for any date and time between 1600 and 2200. The positions
and velocities are given in rectangular coordinates, referred to the ICRS axes. This ephemeris is
not the subject of any IAU resolutions but has become widely adopted internationally; for example,
it is the basis for the tabulations in The Astronomical Almanac and it underlies some of the other
algorithms presented in this circular.

The 1997 and 2000 IAU resolutions form an interrelated and coherent set of standards for
positional astronomy. For example, the definitions of the SI-based time scales rely on the relativity
resolutions, and the position of the Celestial Intermediate Pole and the Celestial Intermediate
Origin can only be properly computed using the new precession and nutation expressions. Many
other links between the resolutions exist. In fact, attempting to apply the resolutions selectively
can lead to quite incorrect (or impossible to interpret) results. This circular is meant to provide an
explanatory and computational framework for a holistic approach to implementing these resolutions
in various astronomical applications. The author hopes that what is presented here does justice to
the efforts of the many people who worked very hard over the last decade to take some important
scientific ideas and work out their practical implications for positional astronomy, to the benefit of
the entire scientific community.

About this Circular

The chapters in this circular reflect the six main subject areas described above. Each of the
chapters contains a list of the relevant IAU resolutions, a summary of the recommendations, an
explanatory narrative, and, in most chapters, a collection of formulas used in implementing the
recommendations. The references for all chapters are collected in one list at the end of the circular
(p. 82 ff.). The reference list is in the usual style for astronomy journal articles. At the end of the
references, a list of Uniform Resource Locators (URLs) is given (p. 87) for documents and data
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that are available on the World Wide Web. These URLs are numbered and they are referred to in
the text by number — for example, a PDF version of this circular can be found at URL 1.

It is assumed that readers have a basic knowledge of positional astronomy; that the terms right
ascension, declination, sidereal time, precesssion, nutation, equinox, ecliptic, and ephemeris are
familiar. Some experience in computing some type of positional astronomy data is useful, because
the ultimate purpose of the circular is to enable such computations to be carried out in accordance
with the 1997 and 2000 IAU resolutions. The explanatory narratives deal primarily with new or
unfamiliar concepts introduced by the resolutions — concepts that would not generally be described
in most introductory textbooks on positional astronomy. This circular is not a substitute for such
textbooks.

TAU resolutions are referred to in the text in the form “res. N of year”, for example, “res. B1.2
of 2000”. The year refers to the year of the IAU General Assembly that passed the resolution. The
proceedings of each General Assembly, including the text of the resolutions, are usually published
the following year. The References section of this circular lists the various proceedings volumes
under “IAU”. An online reference for the text of IAU resolutions (beginning with those passed at
the 1994 General Assembly) is the IAU Information Bulletin (IB) series, at URL 2. Resolutions
are printed in the January IB following a General Assembly, i.e., IB numbers 74, 81, 88, 94, etc.
This circular contains two appendices containing the complete text of the resolutions passed by the
1997 and 2000 General Assemblies, which are the main focus of attention here.

Errata in this circular and updates to it are provided at URL 1.

Other Resources

An increasing number of publications, data, and software related to the recent IAU resolutions are
becoming available.

A major online resource for implementing the IAU resolutions involving Earth rotation and
time (Chapters 2, 5, and 6 here) is the document of conventions used by the International Earth
Rotation and Reference Systems Service (IERS): ITERS Conventions (2003), IERS Technical Note
No. 32, edited by D. D. McCarthy and G. Petit. It is available in printed form from the IERS
and also on the web at URL 3. The online document contains links to Fortran subroutines that
implement the recommended models. The document also contains algorithms specific to geodetic
applications, such as tidal and geopotential models, that have not been the subject of IAU action
and are not discussed in this circular. The IERS also maintains an online list of FAQs on the IAU
resolutions (URL 4).

The TAU Working Group on Nomenclature for Fundamental Astronomy (2003-2006) has a
website (URL 6) with many helpful documents, including a list of definitions (some of which are
used in this circular) and other educational material.

In addition to the IERS software, two other packages of computer subroutines are available for
implementing the TAU resolutions: the Standards of Fundamental Astronomy (SOFA), at URL 7,
and the Naval Observatory Vector Astrometry Subroutines (NOVAS), at URL 8. SOFA is a collec-
tion of routines managed by an international panel, the SOFA Reviewing Board, that works under
the auspices of IAU Division 1 and is chaired by P. Wallace. The board has adopted a set of Fortran
coding standards for algorithm implementations (C versions are contemplated for the future) and
is soliciting code from the astrometric and geodetic communities that implements TAU models.
Subroutines are adapted to the coding standards and validated for accuracy before being added
to the SOFA collection. NOVAS is an integrated package of subroutines, available in Fortran and
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C, for the computation of a wide variety of common astrometric quantities and transformations.
NOVAS dates back to the 1970s but has been continually updated to adhere to subsequent TAU
resolutions.

The Astronomical Almanac, beginning with the 2006 edition, is also a resource for implementing
the TAU resolutions. Not only does it list various algorithms arising from or consistent with the
resolutions, but its tabular data serve as numerical checks for independent developments. Both
SOFA and NOVAS subroutines are used in preparing the tabulations in The Astronomical Almanac,
and various checks have been made to ensure the consistency of the output of the two software
packages.
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A Few Words about Constants

This circular does not contain a list of adopted fundamental astronomical constants, because the
TAU is no longer maintaining such a list. The last set of officially adopted constant values was the
TAU (1976) System of Astronomical Constants. That list is almost entirely obsolete. For a while,
an TAU working group maintained a list of “best estimates” of various constant values, but the IAU
General Assembly of 2003 did not renew that mandate. It can be argued that a list of fundamental
astronomical constants is no longer possible, given the complexity of the models now used and the
many free parameters that must be adjusted in each model to fit observations. That is, there are
more constants now to consider, and their values are theory dependent. In many cases, it would be
incorrect to attempt to use a constant value, obtained from the fit of one theory to observations,
with another theory.

We are left with three defining constants with IAU-sanctioned values that are intended to be
fixed:

1. The Gaussian gravitational constant: k = 0.01720209895. The dimensions of k? are
AU3My'd~2 where AU is the astronomical unit, Mg is the solar mass, and d is the day
of 86400 seconds.

2. The speed of light: ¢ = 299792458 ms~!.

3. The fractional difference in rate between the time scales TT and TCG: Lo = 6.969290134x 10710,
Specifically, the derivative dTT/dTCG =1 — Lg. (See Chapter 3.)

The IERS Conventions (2003) includes a list of constants as its Table 1.1. Several useful ones
from this list that are not highly theory dependent (for astronomical use, at least) are:

1. Equatorial radius of the Earth: ag = 6378 136.6 m.

2. Flattening factor of the Earth: f = 1/298.25642.

3. Dynamical form factor of the Earth: Jy = 1.0826359x1073.

4. Nominal mean angular velocity of Earth rotation: w = 7.292115x107° rads~!.

5. Constant of gravitation: G = 6.673x107'! m3kg~!'s™2 (CODATA 2002 recommended
value: 6.6742x107 M m3kg~1s72).

The first four values above were recommended by Special Commission 3 of the International
Association of Geodesy; the first three are so-called “zero tide” values. (The need to introduce
the concept of “zero tide” values indicates how theory creeps into even such basic constants as
the radius of the Earth as the precision of measurement increases. See section 1.1 of the IERS

viii



CONSTANTS ix

Conventions (2003).) Planetary masses, the length of the astronomical unit, and related constants
used in or obtained from the Jet Propulsion Laboratory DE405/LE405 ephemeris are listed with its
description in Chapter 4. The rate of general precession in longitude (the “constant of precession”)
is given in Chapter 5 on the precession and nutation theories.

The World Geodetic System 1984 (WGS 84), which is the basis for coordinates obtained from
GPS, uses an Earth ellipsoid with ap = 6378137 m and f = 1/298.257223563.

Some astronomical “constants” (along with reference data such as star positions) actually rep-
resent quantities that slowly vary, and the values given must therefore be associated with a specific
epoch. That epoch is now almost always 2000 January 1, 12h (JD 2451545.0), which can be ex-
pressed in any of the usual time scales. If, however, that epoch is considered an event at the
geocenter and given in the T'T time scale, the epoch is designated J2000.0. See Chapter 2.



Abbreviations and Symbols
Frequently Used

and index to most relevant sections

« right ascension 3.2

1) declination 3.2

A nutation in [ecliptic| longitude (usually expressed in arcseconds) 5.3, 5.4.2
Ae nutation in obliquity (usually expressed in arcseconds) 5.3, 5.4.2
€ mean obliquity of date 5.4.1

¢ true obliquity of date (= e + Ae) 5.4.2

€0 mean obliquity of J2000.0 5.3, 5.4.1
0 Earth Rotation Angle 2.3, 6.2
pas microarcecond (= 107¢ arcsecond ~ 4.8 x10712 radian)

o a non-rotating origin or, specifically, the CIO 6.2

o unit vector toward a non-rotating origin or, specifically, the CIO 6.5.1

T the equinox 3.2,6.2
Y unit vector toward the equinox 6.5.1

as or " arcsecond (= 1/3600 degree ~ 4.8x107% radian)

AU astronomical unit(s)

B frame bias matrix 3.5
BCRS Barycentric! Celestial Reference System 1.2
BIPM Bureau International des Poids et Mesures

C matrix for transformation from GCRS to E, 5.4.3, 6.5.3
cen century, specifically, the Julian century of 36525 days of 86400 seconds

CIO Celestial Intermediate Origin? 3 6.2, 6.5.1
CIP Celestial Intermediate Pole 5.2, 6.5.1
CIRS (See E,)

E, instantaneous (true) equator and equinox of date 6.4, 6.5.3
Es, Celestial Intermediate Reference System (CIRS) 6.4, 6.5.3
Es Terrestrial Intermediate Reference System (TIRS) 6.4, 6.5.3
Er equation of the equinoxes 2.3, 2.6.2
Eo equation of the origins 6.5.1.1, 6.5.4
ESA European Space Agency

FKn n'" Fundamental Catalog (Astronomisches Rechen-Institut, Heidelberg) 3.3
GAST Greenwich apparent sidereal time 2.3, 2.6.2
GCRS Geocentric Celestial Reference System 1.2
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GMST
GPS
HCRF
IAG
IAU
ICRF
ICRS
IERS
ITRF
ITRS
IUGG
J2000.0

JD
JPL

mas

NOVAS

R1(¢)

Ra(¢)

Greenwich mean sidereal time

Global Positioning System

Hipparcos Celestial Reference Frame

International Association of Geodesy

International Astronomical Union

International Celestial Reference Frame

International Celestial Reference System

International Earth Rotation and Reference System Service
International Terrestrial Reference Frame

International Terrestrial Reference System

International Union of Geodesy and Geophysics

the epoch 2000 January 1, 12" TT (JD 2451545.0 TT) at the geocenter
(“J2000.0 system” is shorthand for the celestial reference system defined
by the mean dynamical equator and equinox of J2000.0.)

Julian date (time scale used should be specified)

Jet Propulsion Laboratory

milliarcsecond (= 1073 arcsecond ~ 4.8x107Y radian)

nutation matrix (for transformation from mean to true system of date)
unit vector toward the CIP (celestial pole)

Naval Observatory Vector Astrometry Subroutines (software)
precession matrix (for transformation from J2000.0 system to mean sys-
tem of date)

rotation matrix to transform column 3-vectors from one cartesian coor-
dinate system to another. Final system is formed by rotating original
system about its own x-axis by angle ¢ (counterclockwise as viewed from
the +x direction):

1 0 0
Ri(¢)=| 0 cos¢ sing
0 —sing cos¢

rotation matrix to transform column 3-vectors from one cartesian coor-
dinate system to another. Final system is formed by rotating original
system about its own y-axis by angle ¢ (counterclockwise as viewed from
the +y direction):

cos¢p 0 —sing
Ra(¢) = 0o 1 0
sing 0 cos¢

rotation matrix to transform column 3-vectors from one cartesian coor-
dinate system to another. Final system is formed by rotating original
system about its own z-axis by angle ¢ (counterclockwise as viewed from
the +z direction):

cos ¢ sing 0
Rs(p)=| —sing cos¢p 0
0 0 1

xi
2.3, 2.6.2
3.1, 3.4
3.1, 34
3.1, 3.4

6.4
6.4, 6.5.2

2.2
3.2

5.4, 5.4.2
5.4,6.5.1

5.4, 5.4.2
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s CIO locator: the difference between two arcs on the celestial sphere, 6.5.1.3
providing the direction toward the CIO

SI Systeme International d’Unités (International System of Units)

SOFA Standards of Fundamental Astronomy (software)

T unless otherwise specified, time in Julian centuries (36525 days of 86400

seconds) from JD 2451545.0 (2000 Jan 1.5)
(The time scale used should be specified, otherwise TT is understood.)

Teph time argument of JPL planetary and lunar ephemerides 2.2,4.2
TAI International Atomic Time 2.2
TCB Barycentric! Coordinate Time 1.2,2.2
TCG Geocentric Coordinate Time 1.2, 2.2
TDB Barycentric! Dynamical Time 2.2
TIO Terrestrial Intermediate Origin? 6.2, 6.5.2
TIRS (See E)
TT Terrestrial Time 2.2
UCAC USNO CCD Astrographic Catalog 3.4.5
USNO U.S. Naval Observatory
UT1 Universal Time (affected by variations in length of day) 2.3, 2.6.2
UTC Coordinated Universal Time (an atomic time scale) 24
VLBI very long baseline [radio] interferometry
w “wobble” (polar motion) matrix (for transformation from ITRS to E5)  6.5.2
WGS 84 World Geodetic System 1984 6.4

X

Y components of n..., unit vector toward the CIP with respect to the 5.4, 6.5.

Z GCRS

P } standard polar motion parameters, defining location of the CIP in the 6.5.2

Yp ITRS

L “Barycentric” always refers to the solar system barycenter, the center of mass of all bodies

in the solar system.

2 The fundamental reference points referred to here as the Celestial Intermediate Origin (CIO)
and the Terrestrial Intermediate Origin (TIO) were called, respectively, the Celestial Ephemeris
Origin (CEO) and the Terrestrial Ephemeris Origin (TEO) in the IAU resolutions of 2000. The
IAU Working Group on Nomenclature for Fundamental Astronomy (URL 6) has recommended the
change of nomenclature with no change in the definitions. The new terminology is already in use
in The Astronomical Almanac and in IERS documents, and will undoubtedly be adopted by the
TAU General Assembly in 2006. It is used throughout this circular, except in the verbatim text of
the TAU resolutions.

3 The abbreviation CIO was used throughout much of the 20th century to designate the
Conventional International Origin, the reference point for the measurement of polar motion.



Chapter 1

Relativity

’Relevant IAU resolutions: A4.I, A4.II, A4.III, A4.IV of 1991; B1.3, B1.4, B1.5 of 2000

Summary In 2000, the IAU defined a system of space-time coordinates for (1) the so-
lar system, and (2) the Earth, within the framework of General Relativity, by specifying
the form of the metric tensors for each and the 4-dimensional space-time transforma-
tion between them. The former is called the Barycentric Celestial Reference System
(BCRS) and the latter is called the Geocentric Celestial Reference System (GCRS).
The BCRS is the system appropriate for the basic ephemerides of solar system objects
and astrometric reference data on galactic and extragalactic objects. The GCRS is the
system appropriate for describing the rotation of the Earth, the orbits of Earth satel-
lites, and geodetic quantities such as instrument locations and baselines. The analysis
of precise observations inevitably involves quantities expressed in both systems and the
transformations between them.

1.1 Background

Although the theory of relativity has been with us for a century (Einstein’s first papers on special
relativity were published in 1905), it has only been within the last few decades that it has become a
routine consideration in positional astronomy. The reason is simply that the observational effects of
both special and general relativity are small. In the solar system, deviations from Newtonian physics
did not need to be taken into account — except for the advance of the perihelion of Mercury — until
the advent of highly precise “space techniques” in the 1960s and 1970s: radar ranging, spacecraft
ranging, very long baseline interferometry (VLBI), pulsar timing, and lunar laser ranging (LLR).
More recently, even optical astrometry has joined the list, with wide-angle satellite measurements
(Hipparcos) at the milliarcsecond level. Currently, the effects of relativity are often treated as
small corrections added to basically Newtonian developments. But it has become evident that
the next generation of instrumentation and theory will require a more comprehensive approach,
one that encompasses definitions of such basic concepts as coordinate systems, time scales, and
units of measurement in a relativistically consistent way. It may remain the case that, for many
applications, relativistic effects can either be ignored or handled as second-order corrections to
Newtonian formulas. However, even in such simple cases, the establishment of a self-consistent
relativistic framework has benefits — it at least allows the physical assumptions and the errors
involved to be more clearly understood.
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In 1991, the IAU made a series of recommendations concerning how the theory of relativity could
best be incorporated into positional astronomy. These recommendations and their implications were
studied by several working groups in the 1990s and some deficiencies were noted. As a result, a
series of new recommendations was proposed and discussed at IAU Colloquium 180 (Johnston et
al. 2000). The new recommendations were passed by the IAU General Assembly in 2000. It is
these recommendations that are described briefly in this chapter.

In special relativity, the Newtonian idea of absolute time in all inertial reference systems is
replaced by the concept that time runs differently in different inertial systems, in such a way that
the speed of light has the same measured value in all of them. In both Newtonian physics and
special relativity, inertial reference systems are preferred: physical laws are simple when written in
terms of inertial coordinates. In general relativity, however, time (and even space-time) is influenced
not only by velocity but also by gravitational fields, and there are no preferred reference systems.
One can use, in principle, any reference system to model physical processes. For an infinitely small
space-time region around an observer (considered to be a massless point), one can introduce so-
called locally inertial reference systems where, according to the Einstein’s equivalence principle, all
physical laws have the same form as in an inertial reference system in special relativity. Such locally
inertial reference systems are used to describe observations taken by the point-like observer. In
general-relativistic reference systems of finite spatial extent, the geometry of space-time is defined
by a metric tensor, a 4x4 matrix of mathematical expressions, that serves as an operator on two 4-
vectors. In its simplest application, the metric tensor directly yields the generalized (4-dimensional)
distance between two neighboring space-time events. The metric tensor effectively determines the
equations through which physics is described in the reference system.

Time in general relativity can be understood as follows. As a particle moves through space-time,
each point (a space-time event) on the path that it follows can be characterized by a set of four
numbers. These four numbers are the values of the four coordinates in four-dimensional space-time
for a given coordinate system. For the same path in a different coordinate system, the numbers will,
in general, be different. Proper time is simply the time kept by a clock co-moving with the particle,
in whatever trajectory and gravity field it finds itself. Proper time is always measurable if a clock is
available that can travel with the particle. Coordinate time is one of the four independent variables
used to characterize a space-time event. Coordinate time is not measurable. The coordinate time of
a reference system is the independent argument of the equations of motion of bodies in that reference
system. The IAU resolutions on relativity passed in 2000 are concerned with two coordinate frames,
one barycentric and one geocentric, and the coordinate times used in each one.

1.2 The BCRS and the GCRS

In res. B1.3 of 2000, the IAU defined two coordinate frames for use in astronomy, one with its origin
at the solar system barycenter and one with its origin at the geocenter. In current astronomical
usage these are referred to as reference systems. (The astronomical distinction between reference
systems and reference frames is discussed in Chapter 3.) The two systems are the Barycentric
Celestial Reference System (BCRS) and the Geocentric Celestial Reference System (GCRS). Har-
monic coordinates are recommended for both systems (i.e., the harmonic gauge is used). The
resolution provides the specific forms of the metric tensors for the two coordinate systems and the
4-dimensional transformation between them. (The latter would reduce to a Lorentz transformation
for a fictitious Earth moving with constant velocity in the absence of gravitational fields.) The gen-
eral forms of the gravitational potentials, which appear in the metric tensors, are also presented. In
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res. B1.4, specific expansions of the Farth’s gravitational potential in the GCRS are recommended.
In res. B1.5, the relationship between the coordinate time scales for the two reference systems,
Barycentric Coordinate Time (TCB), and Geocentric Coordinate Time (TCG), is given. Each of
the resolutions is mathematically detailed, and the formulas may be found in the text of the resolu-
tions at the end of this circular. For interested readers, the paper titled “The TAU 2000 Resolutions
for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory
Supplement” (Soffel et al. 2003), is highly recommended as a narrative on the background, mean-
ing, and application of the relativity resolutions. Here we will make only very general comments on
the BCRS and GCRS, although the time scales TCB and TCG are described in a bit more detail
in Chapter 2.

The BCRS is a “global” reference system in which the positions and motions of bodies outside
the immediate environment of the Earth are to be expressed. It is the reference system appropriate
for the solution of the equations of motion of solar system bodies (that is, the development of
solar system ephemerides) and within which the positions and motions of galactic and extragalac-
tic objects are most simply expressed. It is the system to be used for most positional-astronomy
reference data, e.g., star catalogs. The GCRS is a “local” reference system for Earth-based mea-
surements and the solution of the equations of motion of bodies in the near-Earth environment,
e.g., artificial satellites. The time-varying position of the Earth’s celestial pole is defined within
the GCRS (res. B1.7 of 2000). Precise astronomical observations involve both systems: the instru-
mental coordinates, boresights, baselines, etc., may be expressed in the GCRS, but in general we
want the astronomical results expressed in the BCRS where they are easier to interpret. Thus it
is unavoidable that data analysis procedures for precise techniques will involve both GCRS and
BCRS quantities and the transformation between them. For example, the basic equation for VLBI
delay (the time difference between wavefront arrivals at two antennas) explicitly involves vectors
expressed in both systems — antenna-antenna baselines are given in the GCRS, while solar system
coordinates and velocities and quasar directions are expressed in the BCRS. Various relativistic
factors connect the two kinds of vectors.

In the 2000 resolutions, the coordinate axes of the two reference systems do not have a defined
orientation. They are described as kinematically nonrotating, which means that the axes have
no systematic rotation with respect to distant objects in the universe (and specifically the radio
sources that make up the ICRF — see Chapter 3). Since the axis directions are not specified,
one interpretation of the 2000 resolutions is that the BCRS and GCRS in effect define families
of coordinate systems, the members of which differ only in overall orientation. The TAU Working
Group on Nomenclature for Fundamental Astronomy has recommended that the directions of the
coordinate axes of the BCRS be understood to be those of the International Celestial Reference
System (ICRS) described in Chapter 3. And, since the transformation between the BCRS and
GCRS is specified in the resolutions, the directions of the GCRS axes are also implicitly defined
by this understanding. Here are the definitions of the two systems recommended by the working

group:

Barycentric Celestial Reference System (BCRS): A system of barycentric space-
time coordinates for the solar system within the framework of General Relativity with
metric tensor specified by the AU 2000 Resolution B1.3. Formally, the metric tensor of
the BCRS does not fix the coordinates completely, leaving the final orientation of the
spatial axes undefined. However, for all practical applications, unless otherwise stated,
the BCRS is assumed to be oriented according to the ICRS axes.
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Geocentric Celestial Reference System (GCRS): A system of geocentric space-
time coordinates within the framework of General Relativity with metric tensor specified
by the TAU 2000 Resolution B1.3. The GCRS is defined such that the transformation
between BCRS and GCRS spatial coordinates contains no rotation component, so that
GCRS is kinematically non-rotating with respect to BCRS. The equations of motion
of, for example, an Earth satellite with respect to the GCRS will contain relativistic
Coriolis forces that come mainly from geodesic precession. The spatial orientation of
the GCRS is derived from that of the BCRS, that is, unless otherwise stated, by the
orientation of the ICRS.

Because, according to the last sentence of the GCRS definition, the orientation of the GCRS
is determined by that of the BCRS, and therefore the ICRS, in this circular the GCRS will often
be described as the “geocentric ICRS”. However, this sentence does not imply that the spatial
orientation of the GCRS is the same as that of the BCRS (ICRS). The relative orientation of these
two systems is embodied in the 4-dimensional transformation given in res. B1.3 of 2000, which,
we will see in the next section, is itself embodied in the algorithms used to compute observable
quantities from BCRS (ICRS) reference data. From another perspective, the GCRS is just a
rotation (or series of rotations) of the international geodetic system (discussed in Chapter 6). The
geodetic system rotates with the crust of the Earth, while the GCRS has no systematic rotation
relative to extragalactic objects.

The above definition of the GCRS also indicates some of the subtleties involved in defining
the spatial orientation of its axes. Without the kinematically non-rotating constraint, the GCRS
would have a slow rotation with respect to the BCRS, the largest component of which is called
geodesic (or de Sitter-Fokker) precession. This rotation, approximately 1.9 arcseconds per century,
would be inherent in the GCRS if its axes had been defined as dynamically non-rotating rather than
kinematically non-rotating. By imposing the latter condition, Coriolis terms must be added (via the
inertial parts of the potentials in the metric; see notes to res. B1.3 of 2000) to the equations of motion
of bodies expressed in the GCRS. For example, as mentioned above, the motion of the celestial
pole is defined within the GCRS, and geodesic precession appears in the precession-nutation theory
rather than in the transformation between the GCRS and BCRS. Other barycentric-geocentric
transformation terms that affect the equations of motion of bodies in the GCRS because of the
axis-orientation constraint are described in Soffel et al. (2003, section 3.3) and Kopeikin & Vlasov
(2004, section 6).

1.3 Computing Observables

Ultimately, the goal of these theoretical formulations is to facilitate the accurate computation of the
values of observable astrometric quantities (transit times, zenith distances, focal plane coordinates,
interferometric delays, etc.) at the time and place of observation, that is, in the proper reference
system of the observer. There are some subtleties involved because in Newtonian physics and
special relativity, observables are directly related to some inertial coordinate, while according to
the rules of general relativity, observables must be computed in a coordinate-independent manner.

In any event, to obtain observables, there are a number of calculations that must be performed.
These begin with astrometric reference data: a precomputed solar system ephemeris and, if a star
is involved, a star catalog with positions and proper motions listed for a specified epoch. The
computations account for the space motion of the object (star or planet), parallax (for a star) or
light-time (for a planet), gravitational deflection of light, and the aberration of light due to the
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Earth’s motions. Collectively, these calculations will be referred to in this circular as the algorithms
for proper place. For Earth-based observing systems, we must also account for precession, nutation,
Earth rotation, and polar motion. There are classical expressions for all these effects (except
gravitational deflection), and relativity explicitly enters the procedure in only a few places, usually
as added terms to the classical expressions and in the formulas that link the various time scales
used. It has become common, then, to view this ensemble of calculations as being carried out
entirely in a single reference system; or, two reference systems, barycentric and geocentric, that
have parallel axes and differ only in the origin of coordinates (that is, they are connected by a
Galilean transformation). For example, the coordinate system defined by the “equator and equinox
of J2000.0”, can be thought of as either barycentric or geocentric. The relativistic effects then are
interpreted simply as “corrections” to the classical result.

While such a viewpoint may be aesthetically tidy, it breaks down at high levels of accuracy
and for some types of observations. Relativity theory leads to a more correct, albeit more subtle,
interpretation for the same set of calculations. It is represented by the BCRS-GCRS paradigm
wherein some of the quantities are expressed relative to the BCRS and others are relative to the
GCRS. The two systems are quite different in a number of ways, as described in the previous
section. The situation is easiest to describe if we restrict the discussion to a fictitious observer
at the center of the Earth, that is, to observations referred to the geocenter. The transformation
between the two systems is not explicit in the normal algorithms, but is embodied in the relativistic
terms in the expressions used for aberration or VLBI delay. The distinction between the two
systems is most obvious in the formulation for angular variables. There, the algorithms for space
motion, parallax, light-time, and gravitational deflection' all use vectors expressed in the BCRS
(star catalogs and solar system ephemerides are inherently BCRS), while the series of rotations for
precession, nutation, Earth rotation, and polar motion (if applied in that order) starts with vectors
expressed in the GCRS. In essence, the aberration calculation connects the two systems because
it contains the transformation between them: its input is a pair of vectors in the BCRS and its
output is a vector in the GCRS. In the VLBI case, aberration does not appear explicitly, but the
conventional algorithm for the delay observable incorporates vectors expressed in both systems,
with appropriate conversion factors obtained from the BCRS-GCRS transformation.”

For an observer on or near the Earth’s surface the calculations have to include the position and
velocity of the observer relative to the geocenter. These are naturally expressed in the GCRS but
for some of the calculations (parallax, light-time, light deflection, and aberration) they must be
added to the position and velocity of the geocenter relative to the solar system barycenter, which
are expressed in the BCRS. Thus another GCRS-BCRS transformation is indicated, although the
velocity is sufficiently small that a Galilean transformation (simple vector addition) suffices for
current observational accuracy (Klioner 2003). Correct use of the resulting vectors results in the
values of the observables expressed, not in the GCRS, but in the proper reference system of the
observer.

Tn the case of the observer at the geocenter, we neglect the gravity field of the Earth itself in computing gravita-
tional deflection.

ZPart of the expression for VLBI delay, in the time domain, accounts for what would be called aberration in the
angular domain; it is possible to compute aberration from the VLBI delay algorithm. See Kaplan (1998).
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1.4 Concluding Remarks

The 2000 TAU resolutions on relativity define a framework for future dynamical developments
within the context of general relativity. For example, Klioner (2003) has described how to use the
framework to compute the directions of stars as they would be seen by a precise observing system
in Earth orbit. However, there is much unfinished business. The apparently familiar concept of
the ecliptic plane has not yet been defined in the context of relativity resolutions. A consistent
relativistic theory of Earth rotation is still some years away; the algorithms described in Chapter 5
are not such a theory, although they contain all the main relativistic effects and are quite adequate
for the current observational precision.

A local reference system similar to the GCRS can be easily constructed for any body of an
N-body system in exactly the same way as the GCRS, simply by changing the notation so that the
subscript E denotes a body other than the Earth. In particular, a celenocentric reference system
for the Moon plays an important role in lunar laser ranging.

It is also worth noting that the 2000 resolutions do not describe the proper reference system of
the observer — the local, or topocentric, system in which most measurements are actually taken.
(VLBI observations are unique in that they exist only after data from various individual antennas
are combined; therefore they are referred to the GCRS ab initio.) A kinematically non-rotating
version of the proper reference system of the observer is just a simplified version of the GCRS: x%
should be understood to be the BCRS position of the observer (v%, and a’, are then the observer’s
velocity and acceleration) and one should neglect the internal potentials. See Klioner & Voinov
(1993); Kopeikin (1991); Kopeikin & Vlasov (2004); Klioner (2004).

One final point: the 2000 IAU resolutions as adopted apply specifically to Einstein’s theory of
gravity, i.e., the general theory of relativity. The Parameterized Post-Newtonian (PPN) formalism
(see, e.g., Will & Nordtvedt (1972)) is more general, and the 2000 resolutions have been discussed in
the PPN context by Klioner & Soffel (2000) and Kopeikin & Vlasov (2004). In the 2000 resolutions,
it is assumed that the PPN parameters g and « are both 1.



Chapter 2

Time Scales

Relevant TAU resolutions: A4.I11, A4.IV, A4.V, A4.VI of 1991; C7 of 1994; B1.3, B1.5, B1.7, B1.8,
B1.9, and B2 of 2000

Summary The IAU has not established any new time scales since 1991, but more
recent IAU resolutions have redefined or clarified those already in use, with no loss of
continuity. There are two classes of time scales used in astronomy, one based on the
ST (atomic) second, the other based on the rotation of the Earth. The SI second has
a simple definition that allows it to be used (in practice or in theory) in any reference
system. Time scales based on the SI second include TAI and TT for practical appli-
cations, and TCG and TCB for theoretical developments. The latter are to be used
for relativistically correct dynamical theories in the geocentric and barycentric refer-
ence systems, respectively. Closely related to these are two time scales, TDB and Tepp,
used in the current generation of ephemerides. Time scales based on the rotation of
the Earth include mean and apparent sidereal time and UT1. Because of irregularities
in the Earth’s rotation, and its tidal deceleration, Earth-rotation-based time scales do
not advance at a uniform rate, and they increasingly lag behind the SI-second-based
time scales. UT1 is now defined to be a linear function of a quantity called the FEarth
Rotation Angle, 0. In the formula for mean sidereal time, § now constitutes the “fast
term”. The widely disseminated time scale UTC is a hybrid: it advances by SI seconds
but is subject to one-second corrections (leap seconds) to keep it within 0%9 of UT1.
That procedure is now the subject of debate and there is a movement to eliminate leap
seconds from UTC.

2.1 Different Flavors of Time

The phrase time scale is used quite freely in astronomical contexts, but there is sufficient confusion
surrounding astronomical times scales that it is worthwhile revisiting the basic concept. A time scale
is simply a well defined way of measuring time based on a specific periodic natural phenomenon.
The definition of a time scale must provide a description of the phenomenon to be used (what
defines a period, and under what conditions), the rate of advance (how many time units correspond
to the natural period), and an initial epoch (the time reading at some identifiable event). For
example, we could define a time scale where the swing of a certain kind of pendulum, in vacuum at
sea level, defines one second, and where the time 00:00:00 corresponds to the transit of a specified

7
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star across a certain geographic meridian on an agreed-upon date.

As used in astronomy, a time scale is an idealization, a set of specifications written on a piece
of paper. The instruments we call clocks, no matter how sophisticated or accurate, provide some
imperfect approximation to the time scale they are meant to represent. In this sense, time scales
are similar to spatial reference systems (see Chapter 3), which have precise definitions but various
imperfect realizations. The parallels are not coincidental, since for modern high-precision applica-
tions we actually use space-time reference systems (see Chapter 1). All time scales are therefore
associated with specific reference systems.

Two fundamentally different groups of time scales are used in astronomy. The first group of
time scales is based on the second that is defined as part of the the Systeme International (SI) —
the “atomic” second — and the second group is based on the rotation of the Earth. The SI second
is defined as 9,192,631,770 cycles of the radiation corresponding to the ground state hyperfine
transition of Cesium 133 (BIPM 1998), and provides a very precise and constant rate of time
measurement, at least for observers local to the apparatus in which such seconds are counted. The
rotation of the Earth (length of day) is quite a different basis for time, since it is variable and has
unpredictable components. It must be continuously monitored through astronomical observations,
now done primarily with very long baseline [radio| interferometry (VLBI). The SI-based time scales
are relatively new in the history of timekeeping, since they rely on atomic clocks first put into
regular use in the 1950s. Before that, all time scales were tied to the rotation of the Earth.
(Crystal oscillator clocks in the 1930s were the first artificial timekeeping mechanisms to exceed
the accuracy of the Earth itself.) As we shall see, the ubiquitous use of SI-based time for modern
applications has led to a conundrum about what the relationship between the two kinds of time
should be in the future. Both kinds of time scales can be further subdivided into those that are
represented by actual clock systems and those that are simply theoretical constructs.

General reviews of astronomical time scales are given in Seidelmann & Fukushima (1992) and
Chapter 2 of the Explanatory Supplement (1992).

2.2 Time Scales Based on the SI Second

Let us first consider the times scales based on the SI second. As a simple count of cycles of
microwave radiation from a specific atomic transition, the SI second can be implemented, at least in
principle, by an observer anywhere. Thus, SI-based time scales can be constructed or hypothesized
on the surface of the Earth, on other celestial bodies, on spacecraft, or at theoretically interesting
locations in space, such as the solar system barycenter. According to relativity theory, clocks
advancing by SI seconds may not appear to advance by SI seconds by an observer on another
space-time trajectory. In general, there will be an observed difference in rate and possibly higher-
order or periodic differences, depending on the relative trajectory of the clock and the observer and
the gravitational fields involved. The precise conversion formulas can be mathematically complex,
involving the positions and velocities not just of the clock and observer but also those of an ensemble
of massive bodies (Earth, Sun, Moon, planets). These considerations also apply to coordinate time
scales established for specific reference systems. The time-scale conversions are taken from the
general 4-dimensional space-time transformation between the reference systems given by relativity
theory (see Chapter 1). While the rate differences among these time scales may seem inconvenient,
the universal use of SI units, including “local” SI seconds, means that the values of fundamental
physical constants determined in one reference system can be used in another reference system
without scaling factors.
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Two Sl-second-based times have already been mentioned in Chapter 1: these are coordinate time
scales (in the terminology of General Relativity) for theoretical developments based on the Barycen-
tric Celestial Reference System (BCRS) or the Geocentric Celestial Reference System (GCRS).
These time scales are called, respectively, Barycentric Coordinate Time (TCB) and Geocentric Co-
ordinate Time (TCG). With respect to a time scale based on SI seconds on the surface of the Earth,
TCG advances at a rate 6.97x10710 faster, while TCB advances at a rate 1.55x10~% faster. TCB
and TCG are not likely to come into common use for practical applications, but they are beginning
to appear as the independent argument for some theoretical developments in dynamical astronomy
(e.g., Moisson & Bretagnon (2001)). However, none of the current IAU recommended models used
in the analysis of astrometric data use TCB or TCG as a basis, and neither time scale appears in
the main pages of The Astronomical Almanac. This simply reflects the fact that there has not been
enough time or motivation for a new generation of dynamical models to be fully developed within
the TAU-recommended relativistic paradigm.

For practical applications, International Atomic Time (TAI) is a commonly used time scale
based on the SI second on the Earth’s surface at sea level (specifically, the rotating geoid). TAI
is the most precisely determined time scale that is now available for astronomical use. This scale
results from analyses by the Bureau International des Poids et Mesures (BIPM) in Sevres, France,
of data from atomic time standards of many countries, according to an agreed-upon algorithm.
Although TAI was not officially introduced until 1972, atomic time scales have been available since
1956, and TAI may be extrapolated backwards to the period 1956-1971 (See Nelson et al. (2001)
for a history of TAI). An interesting discussion of whether TAI should be considered a coordinate
time or a kind of modified proper time' in the context of general relativity has been given by Guinot
(1986). In any event, TAI is readily available as an integral number of seconds offset from UTC,
which is extensively disseminated; UTC is discussed at the end of this chapter. The TAI offset from
UTC is designated AAT = TAI-UTC. (For example, from 1999 through 2005, AAT = 32s.) AAT
increases by 1 s whenever a positive leap second is introduced into UTC (see below). The history
of AAT values can be found on page K9 of The Astronomical Almanac and the current value can
be found at the beginning of each issue of IERS Bulletin A (URL 5).

The astronomical time scale called Terrestrial Time (TT), used widely for geocentric and
topocentric ephemerides (such as in The Astronomical Almanac), is defined to run at a rate of
(1 — Lg) times that of TCG, where Lg = 6.969290134x 10719, The rate factor applied to TCG to
create T'T means that TT runs at the same rate as a time scale based on SI seconds on the surface
of the Earth. L¢g is now considered a defining constant, not subject to further revision. Since TCG
is a theoretical time scale that is not kept by any real clock, for practical purposes, T'T can be con-
sidered an idealized form of TAI with an epoch offset: TT = TAI + 32%184. This expressssion for
TT preserves continuity with previously-used (now obsolete) “dynamical” time scales, Terrestrial
Dynamical Time (TDT) and Ephemeris Time (ET). That is, ET — TDT — TT can be considered
a single continuous time scale.

Important Note: The “standard epoch” for modern astrometric reference data, designated
J2000.0, is expressed as a TT instant: J2000.0 is 2000 January 1, 12" TT (JD 2451545.0 TT) at
the geocenter.

The fundamental solar system ephemerides from the Jet Propulsion Laboratory (JPL) that are
the basis for many of the tabulations in The Astronomical Almanac and other national almanacs

!These terms are described in Chapter 1, p. 2.
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were computed in a barycentric reference system and are distributed with the independent argument
being a coordinate time scale called Tep, (Chapter 4 describes the JPL ephemerides). Tepy differs
in rate from that of TCB, the TAU recommended time scale for barycentric developments; the rate
of Tepn matches that of TT, on average, over the time span of the ephemerides. One may treat
Tepn as functionally equivalent to Barycentric Dynamical Time (TDB), defined by the IAU in 1976
and 1979. Both are meant to be “time scales for equations of motion referred to the barycenter of
the solar system” yet (loosely speaking) match TT in average rate. The original IAU definition of
TDB specified that “there be only periodic variations” with respect to what we now call TT (the
largest variation is 0.0016 s with a period of one year). It is now clear that this condition cannot be
rigorously fulfilled in practice; see Standish (1998a) for a discussion of the issue and the distinction
between TDB and T¢pn. Nevertheless, space coordinates obtained from the JPL ephemerides are
consistent with TDB, and it has been said that “Tep), is what TDB was meant to be.” Therefore,
barycentric and heliocentric data derived from the JPL ephemerides are often tabulated with TDB
shown as the time argument (as in The Astronomical Almanac), and TDB is the specified time
argument for many of the equations presented in this circular.” Because Tepn (*TDB) is not based
on the SI second, as is TCB, the values of parameters determined from or consistent with the JPL
ephemerides will, in general, require scaling to convert them to Sl-based units. This includes the
length of the astronomical unit. Dimensionless quantities such as mass ratios are unaffected.

The problem of defining relativistic time scales in the solar system has been treated by Brumberg
& Kopeikin (1990); the paper is quite general but pre-dates the current terminology.

2.3 Time Scales Based on the Rotation of the Earth

Time scales that are based on the rotation of the Earth are also used in astronomical applications,
such as telescope pointing, that depend on the geographic location of the observer. Greenwich
sidereal time is the hour angle of the equinox measured with respect to the Greenwich meridian.
Local sidereal time is the local hour angle of the equinox, or the Greenwich sidereal time plus the
longitude (east positive) of the observer, expressed in time units. Sidereal time appears in two
forms, mean and apparent, depending on whether the mean or true equinox is the reference point.
The position of the mean equinox is affected only by precession while the true equinox is affected by
both precession and nutation. The difference between true and mean sidereal time is the equation
of the equinoxes, which is a complex periodic function with a maximum amplitude of about 1 s.
Of the two forms, apparent sidereal time is more relevant to actual observations, since it includes
the effect of nutation. Greenwich (or local) apparent sidereal time can be observationally obtained
from the right ascensions of celestial objects transiting the Greenwich (or local) meridian.

Universal Time (UT) is also widely used in astronomy, and now almost always refers to the
specific time scale UT1. Historically, Universal Time (formerly, Greenwich Mean Time) has been
obtained from Greenwich sidereal time using a standard expression. In 2000, the TAU redefined
UT1 to be a linear function of the Earth Rotation Angle, 6, which is the geocentric angle between
two directions in the equatorial plane called, respectively, the Celestial Intermediate Origin (CIO)

2The IAU Working Group on Nomenclature for Fundamental Astronomy is considering a recommendation to
correct the definition of TDB so that a distinction between TDB and T.,n would no longer be necessary; TDB would
be a linear function of TCB with a rate as close to that of TT as possible over the time span of the ephemeris to
which it applies.
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and the Terrestrial Intermediate Origin (TTO) (res. B1.8 of 2000°). The TIO rotates with the
Earth, while the CIO has no instantaneous rotation around the Earth’s axis, so that 0 is a direct
measure of the Earth’s rotational motion: 6 = w, the Earth’s average angular velocity of rotation.
See Chapter 6 for a more complete description of these new reference points. The definition of UT1
based on sidereal time is still widely used, but the definition based on # is becoming more common
for precise applications. In fact, the two definitions are equivalent, since the expression for sidereal
time as a function of UT1 is itself now based on 6.

Since they are mathematically linked, sidereal time, 6, and UT1 are all affected by variations
in the Earth’s rate of rotation (length of day), which are unpredictable and must be routinely
measured through astronomical observations. The lengths of the sidereal and UT1 seconds, and
the value of 6, are therefore not precisely constant when expressed in a uniform time scale such as
TT. The accumulated difference in time measured by a clock keeping SI seconds on the geoid from
that measured by the rotation of the Earth is AT = TT-UT1. A table of observed and extrapolated
values of AT is given in The Astronomical Almanac on page K9. The long-term trend is for AT
to increase gradually because of the tidal deceleration of the Earth’s rotation, which causes UT1
to lag increasingly behind TT.

In predicting the precise times of topocentric phenomena, like solar eclipse contacts, both TT
and UT1 come into play. Therefore, assumptions have to be made about the value of AT at the
time of the phenomenon. Alternatively, the circumstances of such phenomena can be expressed
in terms of an imaginary system of geographic meridians that rotate uniformly about the Earth’s
axis (AT is assumed zero, so that UT1=TT) rather than with the real Earth; the real value of AT
then does not need to be known when the predictions are made. The zero-longitude meridian of
the uniformly rotating system is called the ephemeris meridian. As the time of the phenomenon
approaches and the value of AT can be estimated with some confidence, the predictions can be
related to the real Earth: the uniformly rotating system is 1.002738 AT east of the real system
of geographic meridians. (The 1.002738 factor converts a UT1 interval to the equivalent Earth
Rotation Angle — i.e., the sidereal/solar time ratio.)

2.4 Coordinated Universal Time (UTC)

The worldwide system of civil time is based on Coordinated Universal Time (UTC), which is now
ubiquitous and tightly synchronized. (This is the de facto situation; most nations’ legal codes,
including that of the U.S., do not mention UTC specifically.) UTC is a hybrid time scale, using
the SI second on the geoid as its fundamental unit, but subject to occasional 1-second adjustments
to keep it within 0%9 of UT1. Such adjustments, called leap seconds, are normally introduced at
the end of June or December, when necessary, by international agreement. Tables of the remaining
difference, UT1-UTC, for various dates are published by the International Earth Rotation and
Reference System Service (IERS), at URL 5. Both past observations and predictions are available.
DUT1, an approximation to UT1-UTC, is transmitted in code with some radio time signals, such as
those from WWYV. As previously discussed in the context of TAI, the difference AAT = TAI-UTC
is an integral number of seconds, a number that increases by 1 whenever a (positive) leap second
is introduced into UTC. That is, UTC and TAI share the same seconds ticks, they are just labeled
differently.

3In the resolution, these points are called the Celestial Ephemeris Origin (CEO) and the Terrestrial Ephemeris
Origin (TEO). The change in terminology has been recommended by the IAU Working Group on Nomenclature for
Fundamental Astronomy and will probably be adopted at the 2006 IAU General Assembly.
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Clearly UT1-UTC and AT must be related, since they are both measures of the natural “error”
in the Earth’s angle of rotation at some date. In fact, AT = 325184 + AAT — (UT1-UTC).

For the user, then, UTC, which is widely available from GPS, radio broadcast services, and the
Internet, is the practical starting point for computing any of the other time scales described above.
For the Sl-based time scales, we simply add the current value of AAT to UTC to obtain TAL. TT
is then just 327184 seconds ahead of TAIL The theoretical time scales TCG, TCB, TDB, and Tepn
can be obtained from TT using the appropriate mathematical formulas. For the time scales based
on the rotation of the Earth, we again start with UTC and add the current value of UT1-UTC to
obtain UT1. The various kinds of sidereal time can then be computed from UT1 using standard
formulas.
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Figure 2.1 Differences in readings of various time scales compared to Interna-
tional Atomic Time (TAI). TT and its predecessors, TDT and ET, are all shown as
TAI+32.184 s. The periodic terms of TCB and TDB are exaggerated by a factor of
100. The “stair-step” appearance of UTC is due to the leap seconds inserted into
that time scale so that it tracks UT1. TT and the “steps” of UTC are parallel to
the TAI line because they are all based on the SI second on the geoid. TDB (or
Tepn) tracks TT on average over the time span of the specific ephemeris to which
it applies. Note the instant at the beginning of 1977 when TT, TCB, and TCG all
had the same value. The figure is from Seidelmann & Fukushima (1992).

2.5 To Leap or Not to Leap

Because of the widespread and increasing use of UTC for applications not considered three decades
ago — such as precisely time-tagging electronic fund transfers and other networked business trans-
actions — the addition of leap seconds to UTC at unpredictable intervals creates technical problems
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and legal issues for service providers. There is now a movement to relax the requirement that UTC
remain within 0.9 seconds of UT1. The issue is compounded by the unavoidable scientific fact that
the Earth’s rotation is slowing due to tidal friction, so that the rate of addition of leap seconds to
UTC must inevitably increase. Aside from monthly, annual, and decadal variations, the Earth’s
angular velocity of rotation is decreasing linearly, which means that the accumulated lag in UT1
increases quadratically; viewed over many centuries, the AT curve is roughly a parabola. The
formulas for sidereal time, and length of the old ephemeris second to which the SI second was orig-
inally calibrated, are based on the average (assumed fixed) rate of Earth rotation of the mid-1800s
(Nelson et al. 2001). All of our modern timekeeping systems are ultimately based on what the
Earth was doing a century and a half ago.

An TAU Working Goup on the Redefinition of Universal Time Coordinated (UTC) was estab-
lished to consider the leap second problem and recommend a solution, working with the IERS, the
International Union of Radio Science (URSI), the Radiocommunication Sector of the International
Telecommunications Union (ITU-R), the International Bureau for Weights and Measures (BIPM),
and the relevant navigational agencies (res. B2 of 2000). Possibilities include: using TAI for tech-
nical applications instead of UTC; allowing UT1 and UTC to diverge by a larger amount (e.g., 10
or 100 seconds) before a multi-second correction to UTC is made; making a variable correction to
UTC at regularly scheduled dates; eliminating the corrections to UTC entirely and allowing UTC
and UT1 to drift apart; or changing the definition of the SI second. No solution is ideal (including
the status quo) and each of these possibilities has its own problems. For example, if we keep leap
seconds, or a less frequent multi-second correction, can current systems properly time-tag the date
and time of an event that occurs during the correction? Does a time scale that diverges from UT1
provide a legally acceptable representation of civil time? If corrections are made less frequently,
will the possibility of technical blunders increase? If leap seconds are eliminated, won’t natural
phenomena such as sunrise and sunset eventually fall out of sync with civil time? How do we find all
the existing computer code that assumes |[UT1-UTC| < 0.9s? The matter is now being considered
by the ITU-R, where a working group has proposed eliminating leap seconds from UTC entirely.
Contact Dr. Dennis McCarthy, U.S. Naval Observatory, dmc@maia.usno.navy.mil, for a copy of a
report or if you wish to comment. In any event, it would take a number of years for any proposed
change to take place because of the many institutions and international bodies that would have to
be involved.

For scientific instrumentation, the use of TAI — which is free of leap seconds — has much
to recommend it. Its seconds can be easily synchronized to those of UTC (only the labels of the
seconds are different). It is straightforward to convert from TAI to any of the other time scales.
Use of TAI provides an internationally recognized time standard and avoids the need to establish
an instrument-specific time scale when continuity of time tags is a requirement.

2.6 Formulas

2.6.1 Formulas for Time Scales Based on the SI Second

For the SI-based time scales, the event tagged 1977 January 1, 00:00:00 TAI (JD 2443144.5 TAI) at
the geocenter is special. At that event, the time scales TT, TCG, and TCB all read 1977 January 1,
00:00:32.184 (JD 2443144.5003725). (The 325184 offset is the estimated difference between TAI
and the old Ephemeris Time scale.) This event will be designated ty in the following; it can be
represented in any of the time scales, and the context will dictate which time scale is appropriate.



14 TIME SCALES

From the perspective of a user, the starting point for computing all the time scales is Coordinated
Universal Time (UTC). From UTC, we can immediately get International Atomic Time (TAI):

TAI = UTC + AAT (2.1)

where AAT, an integral number of seconds, is the accumulated number of leap seconds applied to
UTC.

The astronomical time scale Terrestrial Time (TT) is defined by the epoch ¢y and its IAU-
specified rate with respect to Geocentric Coordinate Time (TCG):

dTT
dTCG

=1-Lg where Lg =6.969290134x10710 (exactly) (2.2)

from which we obtain

TT = TCG — Lg (TCG — tg) (2.3)

However, TCG is a theoretical time scale, not kept by any real clock system, so in practice,
TT = TAI + 32°184 (2.4)

and we obtain TCG from TT.

The relationship between TCG and Barycentric Coodinate Time (TCB) is more complex. TCG
and TCB are both coordinate time scales, to be used with the geocentric and barycentric reference
systems (the GCRS and BCRS), respectively. The exact formula for the relationship between TCG
and TCB is given in res. B1.5 of 2000, recommendation 2. For a given TCB epoch, we have

B 1 [TCB 2 g Ve

TCG_TCBCQ/tO (% o+ Uewaloxe) )t = S5 (= xe) + - (2.5)
where c is the speed of light, x. and v, are the position and velocity vectors of the Earth’s center
with respect to the solar system barycenter, and U,,; is the Newtonian potential of all solar system
bodies apart from the Earth. The integral is carried out in TCB since the positions and motions of
the Earth and other solar system bodies are represented (ideally) as functions of TCB. The last term
on the right contains the barycentric position vector of the point of interest, x, and will be zero for
the geocenter, as would normally be the case. The omitted terms are of maximum order ¢~4. Note
that the transformation is ephemeris-dependent, since it is a function of the time series of x. and
v values. The result is a “time ephemeris” associated with every spatial ephemeris of solar system
bodies expressed in TCB. It is to be expected that ephemeris developers will supply appropriate
time conversion algorithms (software) to allow the positions and motions of solar system bodies to
be retrieved for epochs in conventional time scales such as T'T or TAI It is unlikely that ordinary
ephemeris users will have to compute eq. (2.5) on their own.

The functional form of the above expressions may seem backwards for practical applications;
that is, they provide TCG from TCB and TT from TCG. These forms make sense, however, when
one considers how an ephemeris of a solar system body (or bodies) or a spacecraft is developed.
The equations of motion for the body (or bodies) of interest are expressed in either the barycentric
or geocentric system as a function of some independent coordinate time argument. For barycentric
equations of motion, expressed in SI units, we would be tempted immediately to identify this time
argument with TCB. Actually, however, the association of the time argument with TCB is not
automatic; it comes about only when the solution of the equations of motion is made to satisfy
the boundary conditions set by the ensemble of real observations of various kinds. Generally, these
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observations will be time-tagged in UTC, TAI, or TT (all of which are based on the SI second on
the geoid) and these time tags must be associated with the time argument of the ephemeris. The
above formulas can be used to make that association, which then allows the ephemeris to be fit
to the observations. (More precisely, the space-time coordinates of the observation events must
be transformed to the BCRS.) As a consequence, the time argument of the ephemeris becomes a
realization of TCB. The fit of the computed ephemeris to observations usually proceeds iteratively,
and every iteration of the spatial ephemeris produces a new time ephemeris. With each iteration,
the spatial coordinates of the ephemeris become better grounded in reality (as represented by
the observations) and the time coordinate becomes a better approximation to TCB. Viewed from
this computational perspective, the ephemeris and its time argument are the starting point of the
process and the sequence TCB — TCG — TT makes sense.

One can compute an ephemeris and fit it to observations using other formulas for the time
scale conversions. A completely valid and precise ephemeris can be constructed in this way, but its
independent time argument could not be called TCB. The values of various constants used in, or
derived from, such an ephemeris would also not be SI-based and a conversion factor would have to
be applied to convert them to or from SI units. Such is the case with the solar system Development
Ephemeris (DE) series from the Jet Propulsion Laboratory. DE405 is now the consensus standard
for solar system ephemerides and is described in Chapter 4. The DE series dates back to the
1960s, long before TCB and TCG were defined, and its independent time argument is now called
Teph. Tepn can be considered to be TCB with a rate factor applied. Or, as mentioned above,
Tepn can be considered to be functionally equivalent to the time scale called TDB. Both Tepy, and
TDB advance, on average, at the same rate as TT. This arrangement makes accessing the DE
ephemerides straightforward, since for most purposes, TT can be used as the input argument with
little error. The total error in time in using TT as the input argument is <2 ms, which for the
geocentric position of the Moon would correspond to an angular error of <1 mas. When more
precision is required, the following formula can be used:

Teph ~ TDB~ TT + 0.001657 sin (628.3076 T + 6.2401)
+ 0.000022 sin (575.3385 T + 4.2970)
0.000014 sin (1256.6152 T + 6.1969)
0.000005 sin (606.9777 T + 4.0212) (2.6)
0.000005 sin (52.9691 T + 0.4444)
0.000002 sin (21.3299 T + 5.5431)
+ 0.000010 T'sin (628.3076 T + 4.2490) + - - -

+ + 4+ +

where the coefficients are in seconds, the angular arguments are in radians, and 7T is the number of
Julian centuries of TT from J2000.0: T'= (JD(TT) — 2451545.0)/36525. The above is a truncated
form of a much longer and more precise series given by Fairhead & Bretagnon (1990). The maximum
error in using the above formula is about 10 us from 1600 to 2200; that is, its precision is more than
two orders of magnitude better than the approximation T.pn~TDB~TT. For even more precise
applications, the series expansion by Harada & Fukushima (2003) is recommended.

A word of caution: The idea that “T.p, and TDB advance, on average, at the same rate as TT”
is problematic. The independent time argument of a barycentric ephemeris (whether considered to
be Tepn, TDB, or TCB) has a large number of periodic components with respect to TT. Some of
the periods are quite long, and may extend beyond the time period of the ephemeris. Thus, the
“average rate” of the time argument of the ephemeris, with respect to T'T, depends on the averaging
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method and the time span considered. Differences in rate of some tens of microseconds per century
are possible (Fairhead & Bretagnon 1990). These rate ambiguities are probably unimportant
(amounting to fractional errors of only ~10714) for retrieving positions and velocities from the
ephemeris but do affect pulsar timing that is reduced to the barycentric time scale.

2.6.2 Formulas for Time Scales Based on the Rotation of the Earth

For the time scales that are based on the rotation of the Earth, we again start with UTC.

UTl = UTC + (UT1-UTC) (2.7)
UTC + DUT1 (2.8)

where DUT1 is a broadcast approximation to UT1-UTC (precision £0°1). We also have
UT1 =TT - AT (2.9)

where AT = 328184 + AAT — (UT1-UTC). The most recent values of UT1-UTC and AAT are
listed in IERS Bulletin A (URL 5). Values of AT are listed in The Astronomical Almanac on page
KO9.

The Earth Rotation Angle, 6, is

0 = 0.7790572732640 + 1.00273781191135448 Dy, (2.10)

where Dy is the number of UT1 days from 2000 January 1, 12" UT1: Dy = JD(UT1) — 2451545.0.
The angle 6 is given in terms of rotations (units of 27 radians or 360°). The above rate coefficient
gives an Earth rotation period of 86164.0989036903511 seconds of UT1. If we consider this to be
the adopted average rotation period of the Earth in SI seconds, it is consistent with the nominal
mean angular velocity of Earth rotation, w = 7.292115x107° radian s~!, used by the International
Association of Geodesy. The above expression is taken directly from note 3 to res. B1.8 of 2000. An
equivalent form of this expression (if the integral number of rotations is neglected) that is usually
more numerically precise is

6 = 0.7790572732640 + 0.00273781191135448 Dy + frac(JD(UT1)) (2.11)

where frac(JD(UT1)) is the fractional part of the UT1 Julian date, i.e., JD(UT1) modulus 1.0.
Then Greenwich mean sidereal time in seconds is

CMST = 86400-6 + (0.014506 + 4612.156534 T + 1.3915817 T*
—0.00000044 T2 — 0.000029956 T* — 0.0000000368 7°)/15 (2.12)

where T is the number of centuries of TDB (equivalently for this purpose, TT) from J2000.0: T
= (JD(TDB) - 2451545.0)/36525. The polynomial in parentheses is the accumulated precession of
the equinox in right ascension, in arcseconds, as given for the P03 solution (eq. 42) in Capitaine
et al. (2003). Note that two time scales are now required to compute sidereal time: in the “fast
term”, 6 is a function of UT1, while in the remaining terms, 7" is expressed in TDB (or TT).

To obtain Greenwich apparent sidereal time in seconds, we must add the equation of the
equinoTes:

GAST = GMST + &y/15 (2.13)
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which accounts for the motion of the equinox due to nutation. An extended series is now used for
the equation of the equinoxes. The new series includes so-called complementary terms and more
fully accounts for the accumulated effect of combined precession and nutation on the position of
the equinox. The equation of the equinoxes in arcseconds is

Er = At cose
+ 0.00264096 sin (£2)
+ 0.00006352 sin (22)
+ 0.00001175 sin (2F — 2D + 3Q2)
+ 0.00001121 sin (2F — 2D + Q)
— 0.00000455 sin (2F — 2D + 2Q) (2.14)
+ 0.00000202 sin (2F + 3Q)
+ 0.00000198 sin (2F + )
— 0.00000172 sin (392)

— 0.000000877T sin () + - - -

where A1 is the nutation in longitude, in arcseconds; € is the mean obliquity of the ecliptic; and F',
D, and 2 are fundamental luni-solar arguments. All of these quantities are functions of TDB (or
TT); see Chapter 5 for expressions (esp. eqs. 5.12, 5.15, & 5.19). The above series is a truncated
form of a longer series given in the IERS Conventions (2003), but should be adequate for almost
all practical applications.

Local mean sidereal time (LMST) and local apparent sidereal time (LAST) in seconds can then
be computed respectively from

LMST = GMST + <3?20) A and  LAST = GAST + (3(15(;0> A (2.15)

where A is the longitude of the place of interest, in degrees, positive for places east of Greenwich.

In the above, “Greenwich” actually refers to a plane containing the geocenter, the Celestial
Intermediate Pole (CIP), and the point called the Terrestrial Intermediate Origin (TIO). These
concepts are described in Chapters 5 and 6. Loosely, the CIP is the rotational pole, defined by
the precession and nutation theories. For astronomical purposes, the TIO can be considered to be
a point on the rotational equator (the plane orthogonal to the CIP) essentially fixed at geodetic
longitude 0. Strictly, then, the longitude A\ should be measured around the axis of the CIP from
the TIO to the location of interest. Because of polar motion, the pole of the conventional system
of geodetic coordinates is not at the CIP so the longitude we need is not quite the same as the
geodetic longitude. The longitude, in degrees, to be used in eq. 2.15 is

A= A¢ + (zpsin g + yp cos Ag) tan ¢g /3600 (2.16)

where \g and ¢g are the usual geodetic longitude and latitude of the place, with Ag in degrees
(north latitudes and east longitudes are positive); and z, and y, are the coordinates of the pole
(CIP) with respect to the geodetic system, in arcseconds (x, and y, can be a few tenths of an
arcsecond). The geodetic system is formally the International Terrestrial Reference System (ITRS),
which matches WGS-84 (available from GPS) to several centimeters. The local meridian assumed
by the formula for LAST, using the longitude A, passes through the local zenith (orthogonal to the
local surface of the WGS-84 ellipsoid) and the north and south celestial poles — close to but not
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through the local geodetic north and south points. This is the meridian that all stars with apparent
topocentric right ascension equal to LAST will pass over at time UT1. More information can be
found in sections 6.4, 6.5.2, and 6.5.4.

The above formulas are entirely geometric. Not described are astronomical latitude and longi-
tude, which are based on the local direction of gravity. Astronomical latitude and longitude are
affected by the deflection of the vertical caused by permanent gravitational anomalies and, at a
much lower level, semidiurnal tides. Astronomical latitude and longitude must be corrected for
such effects to obtain geodetic latitude and longitude.



Chapter 3

The Fundamental Celestial Reference
System

’Relevant TAU resolutions: A4.VI, A4.VII of 1991; B5 of 1994; B2 of 1997; B1.2 of 2000

Summary Reference data for positional astronomy, such as the data in astrometric
star catalogs or barycentric planetary ephemerides, are now specified within the Inter-
national Celestial Reference System (ICRS). The ICRS is a coordinate system whose
origin is at the solar system barycenter and whose axis directions are effectively defined
by the adopted coordinates of 212 extragalactic radio sources observed by VLBI. These
radio sources (quasars and active galactic nuclei) are assumed to have no observable
intrinsic angular motions. Thus, the ICRS is a “space-fixed” system (more precisely, a
kinematically non-rotating system) without an associated epoch. However, the ICRS
closely matches the conventional dynamical system defined by the Earth’s mean equator
and equinox of J2000.0; the alignment difference is at the 0.02 arcsecond level, negligible
for many applications.

Strictly speaking, the ICRS is somewhat of an abstraction, a coordinate system that
perfectly satisfies a list of criteria. The list of radio source positions that define it for
practical purposes is called the International Celestial Reference Frame (ICRF). In the
terminology that is now commonly used, a reference system like the ICRS is “realized”
by a reference frame like the ICRF, and there can be more than one such realization.
In the case of the ICRS, there is, in fact, a second, lower-accuracy realization for work
at optical wavelengths, called the Hipparcos Celestial Reference Frame (HCRF). The
HCRF is composed of the positions and proper motions of the astrometrically well-
behaved stars in the Hipparcos catalog.

Astrometric data referred to the ICRS is becoming more common, with new catalogs
now available in the optical, infrared, and radio.

The ICRS is itself a specific example of a Barycentric Celestial Reference System, in-
corporating the relativistic metric specified in res. B1.3 of 2000 for solar system barycen-
tric coordinate systems. In other words, the ICRS provides the orientation of the BCRS
axes.

19
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3.1 The ICRS, the ICRF, and the HCRF

The fundamental celestial reference system for astronomical applications is now the International
Celestial Reference System (ICRS), as provided in res. B2 of 1997. The ICRS is a coordinate
system with its origin at the solar system barycenter and axis directions that are fixed with respect
to distant objects in the universe; it is to be used to express the positions and motions of stars,
planets, and other celestial objects. Its relativistic basis is defined by res. B1.3 of 2000; in the
words of that resolution, it is a Barycentric Celestial Reference System (BCRS), and as such its
axes are kinematically non-rotating (see Chapter 1). To establish the ICRS as a practical system,
the TAU specified a set of distant benchmark objects, observable at radio wavelengths, whose
adopted coordinates effectively define the directions of the ICRS axes. This “realization” of the
ICRS, called the International Celestial Reference Frame (ICRF), is a set of high accuracy positions
of extragalactic radio sources measured by very long baseline interferometry (Ma & Feissel 1997;
Ma et al. 1998). The ICRS is realized at optical wavelengths — but at lower accuracy — by the
Hipparcos Celestial Reference Frame (HCRF), consisting of the Hipparcos Catalogue (ESA 1997)
of star positions and motions, with certain exclusions (res. B1.2 of 2000). The coordinates of the
ICRF radio sources and HCRF stars are given relative to the ICRS origin at the solar system
barycenter, and a number of transformations are required to obtain the coordinates that would be
observed from a given location on Earth at a specific date and time.

Although the directions of the ICRS coordinate axes are not defined by the kinematics of the
Earth, the ICRS axes (as implemented by the ICRF and HCRF) closely approximate the axes
that would be defined by the mean Earth equator and equinox of J2000.0 (to within about 0.02
arcsecond), if the latter is considered to be a barycentric system. Because the ICRS axes are
meant to be “space fixed”, i.e., kinematically non-rotating, there is no date associated with the
ICRS. Furthermore, since the defining radio sources are assumed to be so distant that their angular
motions, seen from Earth, are negligible, there is no epoch associated with the ICRF. It is technically
incorrect, then, to say that the ICRS is a “J2000.0 system”, even though for many current data
sources, the directions in space defined by the equator and equinox of J2000.0 and the ICRS axes
are the same to within the errors of the data.

The ICRS, with its origin at the solar system barycenter and “space fixed” axis directions,
is meant to represent the most appropriate coordinate system currently available for expressing
reference data on the positions and motions of celestial objects.

The IAU Working Group on Nomenclature for Fundamental Astronomy has recommended the
following definitions for the ICRS and ICRF:

International Celestial Reference System (ICRS): The idealized barycentric co-
ordinate system to which celestial positions are referred. It is kinematically non-rotating
with respect to the ensemble of distant extragalactic objects. It has no intrinsic ori-
entation but was aligned close to the mean equator and dynamical equinox of J2000.0
for continuity with previous fundamental reference systems. Its orientation is indepen-
dent of epoch, ecliptic or equator and is realized by a list of adopted coordinates of
extragalactic sources.

International Celestial Reference Frame (ICRF): A set of extragalactic objects
whose adopted positions and uncertainties realize the ICRS axes and give the uncertain-
ties of the axes. It is also the name of the radio catalogue whose 212 defining sources
are currently the most accurate realization of the ICRS. Note that the orientation of the
ICRF catalogue was carried over from earlier IERS radio catalogs and was within the
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errors of the standard stellar and dynamic frames at the time of adoption. Successive
revisions of the ICRF are intended to minimize rotation from its original orientation.
Other realizations of the ICRS have specific names (e.g. Hipparcos Celestial Reference
Frame).

3.2 Background: Reference Systems and Reference Frames

The terminology that has become standard over the past decade or so distinguishes between a
reference system and a reference frame. A reference system is the complete specification of how a
celestial coordinate system is to be formed. Both the origin and the orientation of the fundamental
planes (or axes) are defined. A reference system also incorporates a specification of the fundamental
models needed to construct the system; that is, the basis for the algorithms used to transform
between observable quantities and reference data in the system. A reference frame, on the other
hand, consists of a set of identifiable fiducial points on the sky along with their coordinates, which
serves as the practical realization of a reference system.

For example, the fundamental plane of an astronomical reference system has conventionally
been the extension of the Earth’s equatorial plane, at some date, to infinity. Declination is the
angular distance north or south of this plane, and right ascension is the angular distance measured
eastward along the equator from some defined reference point. This reference point, the right
ascension origin, has traditionally been the equinox: the point at which the Sun, in its yearly
circuit of the celestial sphere, crosses the equatorial plane moving from south to north. The Sun’s
apparent yearly motion lies in the ecliptic, the plane of the Earth’s orbit. The equinox, therefore,
is a direction in space along the nodal line defined by the intersection of the ecliptic and equatorial
planes; equivalently, on the celestial sphere, the equinox is at one of the two intersections of the
great circles representing these planes. Because both of these planes are moving, the coordinate
systems that they define must have a date associated with them; such a reference system must
therefore be specified as “the equator and equinox of (some date)”.

Of course, such a reference system is an idealization, because the theories of motion of the Earth
that define how the two planes move are imperfect. In fact, the very definitions of these planes
are problematic for high precision work. Even if the fundamental planes of a reference system are
defined without any reference to the motions of the Earth, there is no way magically to paint them
on the celestial sphere at any particular time. Therefore, in practice, we use a specific reference
frame — a set of fiducial objects with assigned coordinates — as the practical representation of
an astronomical reference system. The scheme is completely analogous to how terrestrial reference
systems are established using survey control stations (geodetic reference points) on the Earth’s
surface.

Most commonly, a reference frame consists of a catalog of precise positions (and motions, if
measurable) of stars or extragalactic objects as seen from the solar system barycenter at a specific
epoch (now usually “J2000.0”, which is 12" TT on 1 January 2000). Each object’s instantaneous
position, expressed as right ascension and declination, indicates the object’s angular distance from
the catalog’s equator and origin of right ascension. Any two such objects in the catalog (if they are
not coincident or antipodal) therefore uniquely orient a spherical coordinate system on the sky —
a reference frame.

A modern astrometric catalog contains data on a large number of objects (IN), so the coordinate
system is vastly overdetermined. The quality of the reference frame defined by a catalog depends
on the extent to which the coordinates of all possible pairs of objects (= N2/2) serve to define
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the identical equator and right ascension origin, within the expected random errors. Typically,
every catalog contains systematic errors, that is, errors in position that are similar for objects that
are in the same area of the sky, or are of the same magnitude (flux) or color (spectral index).
Systematic errors mean that the reference frame is warped, or is effectively different for different
classes of objects. Obviously, minimizing systematic errors when a catalog is constructed is at least
as important as minimizing the random errors.

To be useful, a reference frame must be implemented at the time of actual observations, and
this requires the computation of the apparent coordinates of the catalog objects at arbitrary dates
and times. The accuracy with which we know the motions of the objects across the sky is an
essential factor in this computation. Astrometric star catalogs list proper motions, which are the
projection of each star’s space motion onto the celestial sphere, expressed as an angular rate in right
ascension and declination per unit time. Because the tabulated proper motions are never perfect,
any celestial reference frame deteriorates with time. Moreover, systematic errors in the proper
motions can produce time-dependent warpings and spurious rotations of the frame. Therefore,
the accuracy and consistency of the proper motions are critical to the overall quality, utility, and
longevity of reference frames defined by stars. Even reference frames defined by extragalactic
objects, which are usually considered to have zero proper motion, may deteriorate, because many
of these objects show small apparent motions that are artifacts of their emission mechanisms.

The positions of solar system objects can also be used to define a reference frame. For each
solar system body involved, an ephemeris (pl. ephemerides) is used, which is simply a table of the
celestial coordinates of the body as a function of time (or an algorithm that yields such a table). A
reference frame defined by the ephemerides of one or more solar system bodies is called a dynamical
reference frame. Because the ephemerides used incorporate the motion of the Earth as well as that
of the other solar system bodies, dynamical reference frames embody in a very fundamental way
the moving equator and ecliptic, hence the equinox. They have therefore been used to correct the
orientation of star catalog reference frames (the star positions were systematically adjusted) on
the basis of simultaneous observations of stars and planets. In a sense, the solar system is used
as a gyrocompass. However, dynamical reference frames are not very practical for establishing a
coordinate system for day-to-day astronomical observations.

Descriptions of reference frames and reference systems often refer to three coordinate axes, which
are simply the set of right-handed cartesian axes that correspond to the usual celestial spherical
coordinate system. The xy-plane is the equator, the z-axis points toward the north celestial pole,
and the x-axis points toward the origin of right ascension. Although in principle this allows us to
specify the position of any celestial object in rectangular coordinates, the distance scale (based on
stellar parallaxes) is not established to high precision beyond the solar system. What a reference
system actually defines is the way in which the two conventional astronomical angular coordinates,
right ascension and declination, overlay real observable points in the sky. (See eqs. 5.1 & 5.2 for
the conversion between rectangular and spherical celestial coordinates.)

3.3 Recent Developments

The establishment of celestial reference systems is coordinated by the IAU. The previous astronomi-
cal reference system was based on the equator and equinox of J2000.0 determined from observations
of planetary motions, together with the IAU (1976) System of Astronomical Constants and related
algorithms (Kaplan 1982). The reference frame that embodied this system for practical purposes
was the Fifth Fundamental Catalogue (FK5). The FK5 is a catalog of 1535 bright stars (to magni-
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tude 7.5), supplemented by a fainter extension of 3117 additional stars (to magnitude 9.5), compiled
at the Astronomische Rechen-Institut in Heidelberg (Fricke et al. 1988; Fricke, et al. 1991). The
FK5 was the successor to the FK3 and FK4 catalogs, all of which were based on meridian observa-
tions taken in the visual band — many such observations were, in fact, taken by eye. The formal
uncertainties in the star positions of the FK5 at the time of its publication in 1988 were about
30—40 milliarcseconds over most of the sky, but the errors are considerably worse when systematic
trends are taken into account.

In recent years, the most precise wide-angle astrometry has been conducted not in the optical
regime but at radio wavelengths, involving the techniques of very long baseline interferometry
(VLBI) and pulsar timing. Uncertainties of radio source positions listed in all-sky VLBI catalogs
are now typically less than one milliarcsecond, and often a factor of ten better. Furthermore,
because these radio sources are very distant extragalactic objects (mostly quasars) that are not
expected to show measurable intrinsic motion, a reference frame defined by VLBI positions should
be “more inertial” (less subject to spurious rotation) than a reference frame defined by galactic
objects such as stars or pulsars. The VLBI catalogs do have the disadvantage that their origin of
right ascension is somewhat arbitrary; there is no real equinox in VLBI catalogs, since VLBI has
little sensitivity to the ecliptic plane. However, this problem has turned out to be more conceptual
than practical, since methods have been developed to relate the VLBI right ascension origin to the
equinox as conventionally defined.

Because of these considerations, since the mid 1980s, astronomical measurements of the Earth’s
rotation — from which astronomical time is determined — have depended heavily on VLBI, with
classical methods based on star transits being phased out. Hence the situation evolved to where the
definition of the fundamental astronomical reference frame (the FK5) became irrelevant to some of
the most precise and important astrometric measurements. VLBI revealed, in addition, that the
models of the Earth’s precession and nutation that were part of the old system were inadequate for
modern astrometric precision. In particular, the “constant of precession” — a measurement of the
long-term rate of change of the orientation of the Earth’s axis in space — had been overestimated
by about 0.3 arcseconds per century. Moreover, the success of the European Space Agency’s
Hipparcos astrometric satellite, launched in 1989, promised to provide a new, very accurate set of
star coordinates in the optical regime.

Thus, beginning in 1988, a number of IAU working groups began considering the requirements
for a new fundamental astronomical reference system (Lieske & Abalakin 1990; Hughes, Smith,
& Kaplan 1991). The resulting series of IAU resolutions, passed in 1991, 1994, 1997, and 2000
effectively form the specifications for the ICRS. The axes of the ICRS are defined by the adopted
positions of a specific set of extragalactic objects, which are assumed to have no measurable proper
motions. The ICRS axes are consistent, to about 0.02 arcsecond, with the equator and equinox of
J2000.0 defined by the dynamics of the Earth. However, the ICRS axes are meant to be regarded
as fixed directions in space that have an existence independent of the dynamics of the Earth or the
particular set of objects used to define them at any given time.

Feissel & Mignard (1998) have written a concise review of the ICRS adoption and its implica-
tions. Seidelmann & Kovalevsky (2002) published a broader review of the ICRS and the new IAU
Earth orientation models.

The promotion, maintenance, extension, and use of the ICRS are the responsibilities of IAU
Division 1 (Fundamental Astronomy).
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3.4 ICRS Implementation

3.4.1 The Defining Extragalactic Frame

The International Celestial Reference Frame (ICRF) is a catalog of adopted positions of 608 ex-
tragalactic radio sources observed with VLBI, all strong (>0.1 Jy) at S and X bands (wavelengths
13 and 3.6 cm) (Ma & Feissel 1997; URL 10). Most have faint optical counterparts (typically
my > 18) and the majority are quasars. Of these objects, 212 are defining sources that establish
the orientation of the ICRS axes, with origin at the solar system barycenter. Typical position
uncertainties for the defining sources are of order 0.5 milliarcsecond; the orientation of the axes
is defined from the ensemble to an accuracy of about 0.02 milliarcsecond. As described in sec-
tion 3.4.4, these axes correspond closely to what would conventionally be described as “the mean
equator and equinox of J2000.0”.

The International Earth Rotation and Reference Systems Service (IERS) monitors the radio
sources involved in the ICRF. This monitoring is necessary because, at some level, most of the
sources are variable in both flux and structure and the centers of emission can display spurious
motions. It is possible that, eventually, the defining list of sources will have to be amended to
maintain the fixed orientation of the overall frame.

3.4.2 The Frame at Optical Wavelengths

The ICRS is realized at optical wavelengths by stars in the Hipparcos Catalogue of 118,218 stars,
some as faint as visual magnitude 12 (ESA 1997). Only stars with uncomplicated and well-de-
termined proper motions (e.g., no known binaries) are used for the ICRS realization. This subset,
referred to as the Hipparcos Celestial Reference Frame (HCRF), comprises 85% of the stars in
the Hipparcos catalog. Hipparcos star coordinates and proper motions are given within the ICRS
(J2000.0) coordinate system but are listed for epoch J1991.25. (That is, the catalog effectively
represents a snapshot of the positions and motions of the stars taken on 2 April 1991, a date that is
near the mean epoch of the Hipparcos observations.) At the catalog epoch, Hipparcos uncertainties
for stars brighter than 9th magnitude have median values somewhat better than 1 milliarcsecond in
position and 1 milliarcsecond /year in proper motion (ESA 1997; Mignard 1997). Thus, projected
to epoch J2000.0, typical Hipparcos star position errors are in the range 5—10 milliarcseconds.

3.4.3 Standard Algorithms

Chapters 1, 2, 5, and 6 of this circular describe TAU-sanctioned algorithms used in the construction,
maintenance, and use of the ICRS.

The 2000 TAU resolutions provide the relativistic metric tensors for what it called the Barycen-
tric Celestial Reference System (BCRS) and the Geocentric Celestial Reference System (GCRS), as
well as expressions for the transformation between the two systems; see Chapter 1 and res. B1.3 of
2000. As noted in Chapter 1, the resolutions specify only the relativistic basis of the two reference
systems, and there is no prescription given for establishing the axis directions. The BCRS and
GCRS could therefore be considered families of coordinate systems, each member differing from
the others only in overall orientation. The construction of the ICRS (in particular, the analysis
of VLBI observations) was consistent with the definition of the BCRS in the resolutions. Thus,
the ICRS could be considered one implementation of a BCRS; i.e., a member of the BCRS family.
Recently, the TAU Working Group on Nomenclature for Fundamental Astronomy has recommended
that the orientation of the BCRS axes be understood to be that of the ICRS/ICRF.
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In 2000, the TAU also adopted new models for the computation of the Earth’s instantaneous
orientation, which affect the analysis of VLBI observations that are used to define and maintain the
ICRS, as well as the calculation of various observable quantities from ICRS-compatible reference
data. The new models include what is referred to as the AU 2000A precession-nutation model,
a new definition of the celestial pole, and two new reference points in the equatorial plane for
measuring the rotational angle of the Earth around its instantaneous axis. Despite the TAU action
in 2000, some aspects of the models were not finalized until late 2002 (mid 2005 for agreement

=

on the final precession expressions). These algorithms are described in Chapters 5 and 6 of this
circular and in the IERS Conventions (2003).

The new Earth orientation models are, of course, relevant only to fundamental observations
made from the surface of the Earth. Astrometric observations taken from space platforms, or
those that are differential in nature (based on reference objects all located within a small field),
do not use these models. There are, of course, other effects that must be taken into account in
analyzing astrometric observations — e.g., proper motion, parallax, aberration, and gravitational
light-bending — and algorithms for these may be found in Volumes 1 and 3 of the Hipparcos Cata-
logue documentation (ESA 1997). For analysis of very high accuracy satellite observations, see
the development by Klioner (2003).

As described in the Introduction, there are two collections of general-purpose computer subrou-
tines that implement the new TAU-sanctioned algorithms for practical applications: the Standards
of Fundamental Astronomy (SOFA), at URL 7, and the Naval Observatory Vector Astrometry
Subroutines (NOVAS), at URL 8. NOVAS also implements many of the Hipparcos algorithms, or
the equivalent.

For ground-based applications requiring accuracies of no better than 50 milliarcseconds between
about 1990 and 2010, the algorithms described in Chapter 3 of the Explanatory Supplement (1992)
can still be used with ICRS data. (For such purposes, ICRS data can be treated as being on the
dynamical equator and equinox of J2000.0.) A major revision of the Explanatory Supplement to
reflect the adoption of the ICRS and all the new models is in progress.

3.4.4 Relationship to Other Systems

The orientation of the ICRS axes is consistent with the equator and equinox of J2000.0 represented
by the FK5, within the errors of the latter. See Feissel & Mignard (1998) for a short discussion.
Systematically, the FK5 equator is tilted by 22 mas and its origin of right ascension is offset by
23 mas with respect to the ICRS. But the uncertainties of the FK5 equator and right ascension
system with respect to the dynamical equator and equinox of J2000.0 are 50 and 80 mas, respec-
tively. Since, at J2000.0, the errors of the FK5 are significantly worse than those of Hipparcos, the
ICRS (as realized by the HCRF) can be considered to be a refinement of the FK5 system (ESA
1997) at (or near) that epoch.

The ICRS can also be considered to be a good approximation (at least as good as the FK5) to the
conventionally defined dynamical equator and equinox of J2000.0 (Feissel & Mignard 1998), if the
latter system is considered to be barycentric. This follows from an IAU resolution passed in 1991
that provided the original specifications for the new fundamental astronomical reference system
based on extragalactic objects — what became the ICRS. In fact, the equator is well determined
fundamentally from the VLBI observations that are the basis for the ICRS, and the ICRS pole is
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within 20 milliarcseconds of the dynamical pole.! The zero point of VLBI-derived right ascensions
is arbitrary, but traditionally has been set by assigning to the right ascension of source 3C 273B a
value derived from lunar occultation timings — the Moon’s ephemeris thus providing an indirect
link to the dynamical equinox. The ICRS origin of right ascension was made to be consistent
with that in a group of VLBI catalogs previously used by the IERS, each of which had been
individually aligned to the lunar occultation right ascension of 3C 273B. The difference between
the ICRS origin of right ascension and the dynamical equinox has been independently measured
by two groups that used different definitions of the equinox, but in both cases the difference found
was less than 0.1 arcsecond.

Because of its consistency with previous reference systems, implementation of the ICRS will be
transparent to any applications with accuracy requirements of no better than 0.1 arcseconds near
epoch J2000.0. That is, for applications of this accuracy, the distinctions between the ICRS, FK5,
and dynamical equator and equinox of J2000.0 are not significant.

3.4.5 Data in the ICRS

Although the ICRF and HCRF are its basic radio and optical realizations, the ICRS is gradually
being extended to fainter magnitudes and other wavelengths. Thus, an increasing amount of fun-
damental astronomical data is being brought within the new system. A number of projects for the
densification of the ICRS have been completed or are in progress.

As described above, the ICRF consists of the adopted positions of about 600 extragalactic radio
sources, a third of which are defining sources. In its original presentation, the ICRF contained 608
extragalactic radio sources, including 212 defining sources. All observational data were part of a
common catalog reduction (Ma & Feissel 1997) and thus the adopted coordinates of all the sources
are in the ICRS. Of the 396 non-defining sources, 294 are candidate sources that do not meet all
of the accuracy and observing history requirements of the defining sources but which may at some
later time be added to the defining list. The remaining 102 other sources show excess apparent
position variation and are of lower astrometric quality. ICRF Extension 2 (ICRF-Ext.2) was issued
in 2004 (Fey et al. 2004); the positions of the candidate and other sources were refined and 109
new sources were added. The positions of the defining sources were left unchanged.

The VLBA Calibrator Survey is a list of radio sources, with positions in the ICRS, to be used
as calibrators for the Very Long Baseline Array and the Very Large Array. The original list was
prepared by Beasley et al. (2002); the list has been extended several times and the current version is
known as VCS3 (Petrov et al. 2005). The ICRS is also being established at higher radio frequencies
(24 and 43 GHz); see, e.g., Jacobs et al. (2005).

In the optical regime, the Tycho-2 Catalogue (Hog et al. 2000) (which supersedes the original
Tycho Catalogue and the ACT Reference Catalog) combines a re-analysis of the Hipparcos star
mapper observations with data from 144 ground-based star catalogs. The ground-based catalogs
include the Astrographic Catalogue (AC), a large photographic project carried out near the begin-
ning of the 20th century involving 20 observatories worldwide. Tycho-2 contains 2,539,913 stars,
to about magnitude 12, and combines the accuracy of the recent Hipparcos position measurements

!The reason that the ICRS pole is not perfectly aligned with the dynamical pole is complex. The ICRF was
created from almost 20 years of VLBI observations from which a grand solution was made for the directions to the
extragalactic radio sources and the changing position of the celestial pole. A specific decision made in that analysis
(see Figure 5.2 and footnote on page 37) resulted in an offset of the ICRF (hence ICRS) pole at J2000.0. With
respect to the ICRS X and Y axes, the dynamical mean pole has coordinates on the unit sphere, in milliarcseconds,
of approximately (-16.6,-6.8).
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with proper motions derived from a time baseline of almost a century. Proper motion uncertainties
are 1-3 milliarcseconds/year. At epoch J2000.0, the Tycho-2 positions of stars brighter than 9th
magnitude will typically be in error by 20 milliarcseconds. However, the positional accuracy de-
grades quite rapidly for magnitudes fainter than 9, so that 12th magnitude stars may be expected
to have a median J2000.0 position error exceeding 100 milliarcseconds.

Also in the optical band, the UCAC catalog is nearing completion and will provide ICRS-
compatible positions and proper motions for stars as faint as visual magnitude 16. See Zacharias
(2004) for information on the second release of UCAC data.

The ICRS has been extended to the near infrared through the 2MASS survey (Cutri et al.
2003). This ground-based program provides positions for 471 million point sources, most of which
are stars, observed in the J, H, and Ky infrared bands.

The Jet Propulsion Laboratory DE405/LE405 planetary and lunar ephemerides (usually just
referred to as DE405) (Standish 1998b) have been aligned to the ICRS. These ephemerides provide
the positions and velocities of the nine major planets and the Moon with respect to the solar system
barycenter, in rectangular coordinates. The data are represented in Chebyshev series form and
Fortran subroutines are provided to read and evaluate the series for any date and time. DE405
spans the years 1600 to 2200; a long version, DE406, spans the years —3000 to +3000 with lower
precision. See Chapter 4.

The barycentric data tabulated in The Astronomical Almanac are in the ICRS beginning with
the 2003 edition. Planetary and lunar ephemerides are derived from DE405/LE405. The Astro-
nomical Almanac for 2006 is the first edition fully to support the new ICRS-related algorithms,
including the new IAU Earth rotation models. Geocentric coordinates are therefore given with
respect to the GCRS.

3.5 Formulas

A matrix B is required to convert ICRS data to the dynamical mean equator and equinox of J2000.0
(the “J2000.0 system”), the latter considered for this purpose to be a barycentric system. The same
matrix is used in the geocentric transformations described in Chapters 5 and 6 to adjust vectors in
the GCRS (the “geocentric ICRS”) so that they can be operated on by the conventional precession
and nutation matrices. The matrix B is called the frame bias matriz, and it corresponds to a fixed
set of very small rotations. In the barycentric case it is used as follows:

T'mean(2000) = B I'iors (31)

where 1. 18 a vector with respect to the ICRS and rpcan(2000) 18 @ vector with respect to the
dynamical mean equator and equinox of J2000.0. Both of the r’s are column vectors and, if they

represent a direction on the sky, are of the general form

cosd cos o
r=| cosdsina (3.2)
sin

where « is the right ascension and ¢ is the declination, with respect to the ICRS or the dynamical
system of J2000.0, as appropriate.

In the geocentric case, r,. is replaced by rypg and ryean(2000) is then a geocentric vector. This
transformation must be carried out, for example, before precession is applied to GCRS vectors, since
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the precession algorithm assumes a dynamical coordinate system. That is, the above transformation
is a necessary step in obtaining coordinates with respect to the mean equator and equinox of date,
if one starts with ICRS reference data. See Chapter 5 for more information.

The matrix B is, to first order,

1 day —&o
B=| —dag 1 —no (3-3)
o Mmoo 1
where dag = —14.6 mas, § = —16.6170 mas, and 79 = —6.8192 mas, all converted to radians

(divide by 206264 806.247). The values of the three small angular offsets are taken from the
IERS Conventions (2003). They can be considered adopted values; previous investigations of the
dynamical-ICRS relationship obtained results that differ at the mas level or more, depending on
the technique and assumptions. See the discussion in Hilton & Hohenkerk (2004). The angles &
and 7y are the ICRS pole offsets, and dag is the offset in the ICRS right ascension origin with
respect to the dynamical equinox of J2000.0, as measured in an inertial (non-rotating) system.

The above matrix can also be used to transform vectors from the ICRS to the FK5 system at
J2000.0. Simply substitute dag = —22.9 mas, §, = 9.1 mas, and 79 = —19.9 mas. However, there
is also a time-dependent rotation of the FK5 with respect to the ICRS (i.e., a slow spin), reflecting
the non-inertiality of the FK5 proper motions; see Mignard & Freeschlé (2000).

Although the above matrix is adequate for most applications, a more precise result can be
obtained by using the second-order version:

1— 2(dod +&3) dayg —&o
B= —dag — oo 1— 3(ded +nd) =10 (3.4)
&o — Modayg no + §odag 1—3m3 + &)

The above matrix, from Slabinski (2005), is an excellent approximation to the set of rotations
Ri(—n0)Ra(&)Rs(dagp), where Ry, Ro, and R3 are standard rotations about the x, y, and z axes,
respectively (see “Abbreviations and Symbols Frequently Used” for precise definitions).



Chapter 4

Ephemerides of the Major Solar
System Bodies

’Relevant IAU resolutions: (none)

Summary The de facto standard source of accurate data on the positions and motions
of the major solar system bodies is currently the ephemeris designated DE405/LE405
(or simply DE405) developed at the Jet Propulsion Laboratory. This ephemeris provides
instantaneous position and velocity vectors of the nine major planets and the Earth’s
Moon, with respect to the solar system barycenter, for any date and time between 1600
and 2201. Lunar rotation angles are also provided. The ephemeris has been the basis
for the tabulations in The Astronomical Almanac since the 2003 edition. The DE405
coordinate system has been aligned to the ICRS.

TAU-standard data on the sizes, shapes, rotational parameters, and latitude-longitude
systems for the major planets and their satellites are given in the reports of the IAU/TAG
Working Group on Cartographic Coordinates and Rotational Elements, issued every
three years.

4.1 The JPL Ephemerides

A list of positions of one or more solar system bodies as a function of time is called an ephemeris
(pl. ephemerides). An ephemeris can take many forms, including a printed tabulation, a sequential
computer file, or a piece of software that, when interrogated, computes the requested data from
series approximations or other mathematical schemes.

Ephemerides of the major solar system bodies, with respect to the solar system barycenter, have
been calculated for many years at the Jet Propulsion Laboratory (JPL) to support various spacecraft
missions. These ephemerides have been widely distributed and, because of their quality, have
become the de facto standard source of such data for applications requiring the highest accuracy.
Between the early 1980s and about 2000, the JPL ephemeris designated DE200/LE200 was most
frequently used for such applications; it was the basis for the tabulations in The Astronomical
Almanac from the 1984 to 2002 editions. A more recent JPL ephemeris, DE405/LE405, has now
come into widespread use, and has been the basis for The Astronomical Almanac since the 2003
edition. These ephemerides are usually referred to as just DE200 and DE405, respectively. Neither
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DE200 nor DE405 have been the subject of any IAU resolution, although they have been frequently
reported on at various IAU-sponsored meetings, and DE405 is a recommended standard of the IERS
(IERS Conventions 2003). A comparison of DE405 with DE200, with an estimate of their errors,
has been given by Standish (2004).

The JPL ephemerides are computed by an N-body numerical integration, carried out in a
barycentric reference system which is consistent, except for the time scale used, with the Barycentric
Celestial Reference System (BCRS) described in Chapter 1. The equations of motion, the method of
integration, and the techniques used to adjust the starting conditions of the integration so that the
results are an optimal fit to observations are described in Chapter 5 of the Explanatory Supplement
(1992). That chapter specifically describes DE200, but the basic procedures are largely the same
for all of the JPL ephemerides.

The position and velocity data provided by the JPL ephemerides represent the centers of mass
of each planet-satellite system (although data for the Earth and Moon can be extracted separately).
Therefore, the positions, when converted to geocentric apparent places — angular coordinates as
seen from Earth — do not precisely indicate the center of the apparent planetary disk. Displace-
ments can amount to a few tens of milliarcseconds for Jupiter and Saturn, a few milliarcseconds
for Uranus and Neptune, and about 0.1 arcsecond for Pluto.

4.2 DEA405

The JPL DE405/LE405 ephemeris provides the coordinates and velocities of the major planets,
the Sun, and the Earth’s Moon for the period 1600 to 2200 (Standish 1998b). The position and
velocity 3-vectors are in equatorial rectangular coordinates referred to the solar system barycenter.
The reference frame for the DE405 is the ICRF; the alignment onto this frame, and therefore onto
the ICRS, has an estimated accuracy of a few milliarcseconds, at least for the inner-planet data.
Optical, radar, laser, and spacecraft observations were analyzed to determine starting conditions
for the numerical integration and values of fundamental constants such as the Earth/Moon mass
ratio and the length of the astronomical unit in meters. In addition to the planetary and lunar
coordinates and velocities, the ephemerides, as distributed, include the nutation angles of the Earth
and the rotation (libration) angles of the Moon. (Note, however, that the nutation angles are not
derived from the IAU 2000A theory described in Chapter 5.)

As described in Chapter 2, DE405 was developed in a barycentric reference system using Tepp,
a barycentric coordinate time (Standish 1998a). Tepp is rigorously equivalent to TCB in a math-
ematical sense, differing only in rate: the rate of Tep, matches the average rate of TT, while the
rate of TCB is defined by the SI system. The IAU time scale TDB, often (but erroneously) con-
sidered to be the same as Tepy, is a quantity that cannot be physically realized, due to its flawed
definition. So, in fact, the use of the name TDB actually refers to quantities based on or created
with Teph.l Astronomical constants obtained from ephemerides based on Tepp (or TDB) are not
in the SI system of units and must therefore be scaled for use with TCB or other SI-based time
scales.

The ephemerides are distributed by JPL as plain-text (ASCII) computer files of Chebyshev
series coefficients and Fortran source code. Third-party C versions of the code are also available
and, for Unix users, the data files can be downloaded in binary form. Once the system is installed
on a given computer, a Fortran subroutine named PLEPH can be called to provide the position and

!Because of this, the TAU Working Group on Nomenclature for Fundamental Astronomy has recommended chang-
ing the definition of TDB to be consistent with that of Tep.
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velocity of any requested body, at any date and time; PLEPH supervises the process of reading the
Chebyshev file and evaluating the appropriate series. Normally the position and velocity vectors
returned are expressed in units of AU and AU/day, respectively. The date/time requested must be
expressed as a Tepy or TDB Julian date. (An entry named DPLEPH is provided that allows the
input Julian date to be split into two parts for greater precision.) And, since |TT — Tepn| < 0.002 s,
a TT Julian date may be used for applications not requiring the highest accuracy. The data and
software files can be obtained on CD-ROM from Willmann-Bell, Inc. (URL 11a), or downloaded
from a JPL ftp server (URL 11b). A “README?” file provides export information and software
documentation (available separately at URL 12).

An extended version of DE405/LE405, called DE406/LE406, is available that spans the years
—-3000 to 43000, but with coordinates given to lower precision (they are represented by shorter
Chebyshev series). The nutation angles and the lunar rotation angles are also omitted from the
DE406 files. DE406 is provided only in Unix binary format. These files are about 1/3 the size of
those for DE405 for a given span of time. The additional error in the coordinates (DE406 — DE405)
may amount to 25 m for the planets and 1 m for the Moon, which may be significant for some
applications.

The NOVAS software package mentioned in the Introduction provides an interface to an existing
DE405 or DE406 installation through Fortran subroutine SOLSYS or C function ephemeris.

4.3 Sizes, Shapes, and Rotational Data

The TAU/TAG? Working Group on Cartographic Coordinates and Rotational Elements (URL 13)
produces a report every three years (for each IAU General Assembly) giving the best estimates
for the dimensions and rotational parameters of the planets, satellites, and asteroids, as far as
is known. The working group is also responsible for establishing latitude-longitude coordinate
systems for these bodies. The rotational elements given in the report for the 2000 General Assembly
(Seidelmann et al. 2002) serve to orient these coordinate systems within the ICRS as a function
of time. (Note that the time scale in this report is TDB, not TCB as stated.) The working
group’s reports are the basis for the physical ephemerides of the planets given in The Astronomical
Almanac.

Although the rotational elements of the Earth and Moon are given in each report for complete-
ness, the expressions given there provide only an approximation to the known motions and should
not be used for precise work (e.g., for the Earth, precession is accounted for only to first order
and nutation is neglected). Lunar rotation (libration) angles can be obtained from DE405, and
Chapters 5 and 6 of this circular describe algorithms for the precise instantaneous alignment of the
terrestrial coordinate system within the GCRS (the “geocentric ICRS”).

4.4 DE405 Constants

The constants below were used in or determined from the DE405 ephemeris. Many DE405 constants
are expressed in what have been called “TDB units”, rather than SI units. (Perhaps it is more
proper to say that the constants have TDB-compatible values.) A scaling factor, K =1/(1 — Lp),
where Lp is given below, is required to convert such constants, with dimensions of length or time,
to SI units (Irwin & Fukushima 1999). Dimensionless quantities such as mass ratios do not require

2JAG = International Association of Geodesy
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scaling.
Lp =1.55051976772x10® = K = 1.000000 015505 198 (4.1)

The value of Lp is taken from note 3 of res. B1.5 of 2000.

These conversions also depend on assumptions about what constants are truly fundamental and
what their values are (Klioner 2005); therefore, the SI value of the astronomical unit in meters is
not given below. The planetary masses below include contributions from satellites and atmospheres.

Constant Symbol DE405 Value Equivalent SI value
astronomical unit in seconds TA 499.004 7838061 s 499.004 786 3852 s
astronomical unit in meters A or cty 149597870691 m
heliocentric gravitational GS or GM,, 1.3271244002x10%° 1.3271244208x10%°

constant m3s~2 m3s2
Moon/Earth mass ratio u 1/81.30056
Sun/planet mass ratios:

Mercury 6023 600

Venus 408 523.71

Earth + Moon 328 900.561400

Earth 332 946.050895. ..

Mars 3098708

Jupiter 1047.3486

Saturn 3497.898

Uranus 22902.98

Neptune 19412.24

Pluto 135200000



Chapter 5

Precession and Nutation

’Relevant IAU resolutions: B1.6, B1.7 of 2000

Summary Precession and nutation are really two aspects of a single phenomenon, the
overall response of the spinning, oblate, elastic Earth to external gravitational torques
from the Moon, Sun, and planets. As a result of these torques, the orientation of the
Earth’s rotation axis is constantly changing with respect to a space-fixed (locally iner-
tial) reference system. The motion of the celestial pole among the stars is conventionally
described as consisting of a smooth long-term motion called precession upon which is
superimposed a series of small periodic components called nutation.

The algorithms for precession used generally from about 1980 through 2000 (in
The Astronomical Almanac from the 1984 through 2005 editions) were based on the
IAU (1976) value for the rate of general precession in ecliptic longitude (5029.0966
arcseconds per Julian century at J2000.0). Nutation over most of the same time period
was given by the 1980 TAU Theory of Nutation. However, not long after these algorithms
were widely adopted, it became clear that the IAU (1976) rate of precession had been
overestimated by approximately 3 milliarcseconds per year. Further observations also
revealed periodic errors of a few milliarcseconds in the 1980 IAU Theory of Nutation.
For many applications these errors are negligible, but they are significant at the level
of the best ground-based astrometry and geodesy.

As part of the 2000 TAU resolutions, the IAU 2000A precession-nutation model was
introduced, based on an updated value for the rate of precession and a completely
new nutation theory. As before, the model actually consists of two parts, a precession
algorithm describing the smooth secular motion of the celestial pole and a nutation
algorithm describing the small periodic variations in the pole’s position. The precession
algorithm consists of short polynomial series for the values of certain angles. The sines
and cosines of these angles, in combination, then define the elements of a precession
matrix, P. The nutation algorithm consists of a rather long series expansion in Fourier
terms for the angular offsets, in ecliptic longitude and latitude, of the actual celestial
pole (as modeled) from the precession-only pole (true pole — mean pole). The sines and
cosines of these offsets, in combination, then define the elements of a nutation matrix,
N. The P and N matrices are applied to the coordinates of celestial objects, expressed
as 3-vectors, to transform them from the equator and equinox of one epoch to the
equator and equinox of another.

33
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5.1 Aspects of Earth Rotation

The Earth is a relatively well-behaved rotating body, and illustrates the three basic elements of
classical spin dynamics: precession, nutation, and Eulerian wobble. In fact, to first order, the Earth
can be considered to be a rigid “fast top”, and very good approximations to its rotational motion
can be obtained from elementary developments. Although the effects of the Earth’s liquid core,
elastic mantle, and oceans are not negligible for modern observations, they can be considered to be
small perturbations on the rigid-body motion. Since the Earth is nearly spherical and experiences
relatively weak torques, its axis of rotation moves slowly with respect to both the stars and the
body of the Earth itself.

The orientation of any rotating rigid body can be described as a time series of three Euler angles
that relate a body-fixed coordinate system to a space-fixed coordinate system. If the body-fixed
coordinate system can be defined such that the rate of change of one of the three Euler angles
is much greater than that of the other two — as is the case for the Earth — then the rotational
kinematics are usually described in terms of the slowly changing orientation of an axis of rotation
passing through the body’s center of mass. We can equivalently speak of the kinematics of the
pole: one of the points where the axis of rotation intersects the body’s surface or, extended to
infinity, the “celestial sphere”. For this kinematic construction to work well, the angular motion of
the axis or pole should be small and nearly linear over one rotation, predictable from theory, and
observable.

However, as was pointed out by Eubanks (1993), when we use such an axis or pole, we need
five angles, not three, to fully describe the instantaneous orientation of the body: two angles to
describe the orientation of the body with respect to the axis, one to describe the angle of the
body’s rotation about the axis, and two more to describe the orientation of the axis in the fixed
external system (“inertial space”). For the Earth, these five angles correspond to the five standard
parameters of Earth orientation disseminated by organizations such as the IERS: the coordinates
of the pole, =, and y,, measured in a terrestrial coordinate system; the Universal Time difference,
UT1-UTC; and the celestial pole offsets, diy and de, measured in a celestial coordinate system.
Phenomenologically, the parameters divide up as follows: x, and y, describe polar motion, the
variations in the position of the pole with respect to the Earth’s crust; UT1-UTC measures the
integrated variation in length of day, the departure from a constant angular rate of rotation; and
dy and de are the errors in the computed position of the celestial pole, reflecting deficiencies in the
adopted algorithms for precession and nutation.

What we call polar motion corresponds, in rigid-body rotation, to the free Eulerian wobble of
the figure axis about the rotation axis. On the real Earth, the phenomenon is not that simple.
From an Earth-fixed (rotating) frame of reference, polar motion is a 10-meter (0.3 arcsecond) quasi-
circular excursion in the pole position, with principal periods of 12 and 14 months. The 14-month
component corresponds to the Eulerian wobble, as modified by the Earth’s elasticity, while the
12-month component undoubtedly is a seasonal effect. Smaller, quasi-random variations are not
well understood. None of the components is regular enough to permit reliable predictions, and
polar motion must be obtained from observations.

Variations in the Earth’s rotation rate are due to several causes. There are fortnightly, monthly,
semiannual, and annual tidal effects, and other short-term and seasonal changes are largely due to
exchange of angular momentum with the atmosphere. Longer-term variations (decade fluctuations)
are less well understood. For a discussion of time scales that are based on the variable rotation of
the Earth, see sections 2.1 and 2.3.

Precession and nutation refer to the changing orientation of the Earth’s axis, with respect to a
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space-fixed (kinematically non-rotating) system, in response to external torques. The torques are
due to the gravitational attraction of the Moon and Sun (and, to a much lesser extent, the planets)
on the equatorial bulge of the Earth. Precession and nutation are really different aspects of a
single physical phenomenon, and it has become more common in recent years to write “precession-
nutation”. Precession is simply the secular term in the response, while nutation is the set of periodic
terms. On the celestial sphere, the celestial pole traces out a circle, about 23° in radius, centered
on the ecliptic pole (the direction orthogonal to the ecliptic plane), taking about 26,000 years to
complete one circuit (~20 arcseconds/year). Precession theory describes this smooth, long-term
motion, and the precessional pole is referred to as the mean pole (the orthogonal plane is the mean
equator). But the pole also undergoes a hierarchy of small epicyclic motions, the largest of which
is a 14x18 arcsecond ellipse traced out every 18.6 years (see Fig. 1). Nutation theory describes
these periodic motions. To get the path of the true pole on the celestial sphere (i.e., the direction of
the Earth’s axis in space), it is necessary to compute both precession and nutation; conventionally,
they are described by separate time-dependent rotation matrices, P(t) and N(¢), which are either
multiplied together or applied sequentially.
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Figure 5.1 The path of the true celestial pole on the sky, over an 18-year period,
compared to the mean pole. The mean pole moves along a smooth arc at a rate of
20 arcseconds per year due to precession only. The complex epicyclic motion of the
true pole is nutation. The inset shows the detail of one year’s motion.
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5.2 Which Pole?

In theoretical developments of Earth rotation, the first issue that must be confronted is the definition
of the celestial pole. If the Earth were a rigid oblate spheroid, there would be three possible axes,
and corresponding poles, to choose from: the angular momentum axis; the rotation axis, defined
by the instantaneous angular velocity vector; and the figure axis, which is the body-fixed axis
orthogonal to the geometric equator and along the unique eigenvector of the Earth’s inertia tensor.
The distinctions among the axes arise from the physics of rotation. For example, as previously
noted, in a rotating rigid body, the free Eulerian wobble describes the motion of the figure axis
with respect to the rotation axis (or vice versa). The analog of this on the real Earth is polar
motion.

In the previous section, precession-nutation was described as the changing orientation of the
Earth’s axis in response to external torques, expressed in a space-fixed (non-rotating) frame of
reference. Which axis? The principal components of the response are rather large, amounting to
many arcseconds over the course of a year, and are nearly the same for all three axes. (However,
the three axes cannot coincide in the presence of external torques.) For a rigid Earth, the forced
oscillations of the figure and rotation axes differ by about 10 milliarcseconds, and those of the
angular momentum and rotation axes differ by only about 1 milliarcsecond. Until the mid-20th
century, observations were not accurate enough to distinguish between the axes, so the choice of the
best axis for theory was academic. But with improving observational accuracy and new techniques
coming online in the 1960s and 1970s, the question of which axis should be used for the theoretical
developments became important. After considerable discussion, the consensus emerged that the
forced motion of the figure axis was the most relevant for observations, and therefore also for theory.

At about the same time, new theoretical work was being undertaken based on Earth models
that were triaxial and contained a liquid core and elastic mantle. Such theories complicate the axis
question considerably, because the inertia tensor varies with time as the Earth’s shape responds
to tidal forces, and the tidal deformation results in large daily excursions of the Earth’s axis of
figure. These excursions do not, in general, reflect the changing overall orientation of the Earth’s
crust in space, which is relevant to astronomical observations. That is, for the elastic Earth, the
figure axis as classically defined is not an astronomically useful axis. The solution is to construct a
rotating cartesian coordinate system tied to the elastic, rotating Earth in such a way that (1) the
net angular momentum of the tidal deformation, relative to this system, is always zero; and (2) for
zero tidal deformation, the axes correspond to the principal axes of the Earth’s mantle. These axes
are the “Tisserand mean axes of the body” (Munk & MacDonald 1960), and the Tisserand axis of
the maximum moment of inertia is referred to in res. B1.7 of 2000 as “the mean surface geographic
axis”. Almost all modern theories of nutation refer to the principal Tisserand axis; in the previously
used 1980 TAU Theory of Nutation it was referred to as axis B, and the corresponding pole called
the “Celestial Ephemeris Pole”.

However, even if we have chosen an axis that best reflects the overall rotation of stations (obser-
vatories) on the Earth’s surface, a further complication arises as the observations and theoretical
developments become more sensitive to short-period motions. The problem is the small but non-
negligible circular components of nutation or polar motion with periods near one day. One can
imagine the geometric confusion that arises when the pole undergoes a circular motion in one ro-
tation period; in fact, it becomes difficult to disentangle the various effects, and our conventional
labels become nearly meaningless. For example, any prograde nearly-diurnal nutation is equivalent
to a long-period variation in polar motion, and any retrograde nearly-diurnal polar motion appears
as a long-period nutation component (Capitaine 2000). In practice, this means a potential “leak-
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age” or “crossover” from the Earth orientation parameters x;, and y, to diy» and de or vice versa.
The only practical solution is an explicit (although somewhat arbitrary) cutoff in the periods of
what is considered precession-nutation, embodied in the definition of the celestial pole.

Therefore, the new IAU definition of the celestial pole to be used for the new precession-
nutation model (res. B1.7 of 2000) is defined by the motions of Tisserand mean axis of the Earth
with periods greater than two days in the celestial reference system. This pole is called the Celestial
Intermediate Pole (CIP). The position of the CIP is given by the adopted precession-nutation model
plus observational corrections. The word intermediate reminds us that the definition of the pole is
merely a convention, serving to impose a division between what we call precession-nutation (the
Earth orientation angles measured in the celestial system) and polar motion (the Earth orientation
angles measured in the terrestrial system). The CIP is the true pole, orthogonal to the true
equator of date. Its motion is defined within the Geocentric Celestial Reference System (GCRS)
— see Chapter 1. Therefore, the geometric transformations described in this chapter (as well as
those in Chapter 6) all apply within a geocentric system. The GCRS can be described loosely as
the “geocentric ICRS”, since its axis directions are obtained from those of the ICRS.

5.3 The New Models

The variables diy) and de are the small angular offsets on the sky expressing the difference between
the position of the celestial pole that is observed and the position predicted by the conventional
precession and nutation theories. These angles are just the differential forms of the angles Ay and
A€ in which nutation theories are conventionally expressed (di and de are sometimes labeled AA
and AAe). Ay and Ae are in turn differential forms of the ecliptic coordinates of the celestial pole
(see Fig. 5.1).

Obviously the time series of dy and de values, if they show systematic trends, can be used to
improve the theories of precession and nutation. In fact, 20 years of di) and de values from VLBI
show significant patterns — see Fig. 5.2. Most obvious is the overall downward slope in longitude
and an annual periodicity in both longitude and obliquity, suggesting the need for substantial
corrections to the precession rate as well to the annual nutation term. A long-period sinusoid
is also evident, and spectral analysis reveals the presence of a number of periodic components.’
Other techniques, particularly lunar laser ranging (LLR), confirm the general trends. As a result,
there has been a major multinational effort to improve the precession and nutation formulation
and obtain interesting geophysical information in the process. This project, coordinated by an
TAU/TUGG? working group, has involved dozens of investigators in several fields, and the resulting
algorithms, taken together, are referred to as the TAU 2000A precession-nutation model.

!The figure indicates the origin of the ICRS “frame bias” discussed in Chapter 3. The pole offsets shown are taken
from the solution for the ICRF catalog. The ICRS frame biases in longitude and obliquity are essentially the values,
at J2000.0 (Time=100), of the two curves fitted to the data. The data was arbitrarily zeroed near the beginning of
the data span, which led to non-zero values at J2000.0.

2JUGG = International Union of Geodesy and Geophysics
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Figure 5.2 Observed values of celestial pole offsets from VLBI data. Offsets in
longitude have been multiplied by the sine of the obliquity to allow the same scale
to be used for both components. Circled points with error bars represent the offset
of the observed pole with respect to the computed pole, and the solid line in each
plot is a curve fitted to the data. The computed pole is given by the Lieske et al.
(1977) precession expressions and the 1980 TAU Theory of Nutation. These plots
are from Ma et al. (1998).

The VLBI observations of dy and de indicate the error in the computed position of the pole
with respect to a space-fixed system defined by the positions of extragalactic objects. However,
the conventional expressions for precession and nutation have used angles measured with respect
to the ecliptic, a plane to which VLBI is not sensitive. The ecliptic plane has a slow precessional
movement of its own due to planetary perturbations on the heliocentric orbital motion of the
Earth-Moon barycenter.® In the theoretical developments it is necessary to distinguish between
precession of the equator and precession of the ecliptic, which were formerly called, respectively,
lunisolar precession and planetary precession. Both types of precession are measured with respect
to a space-fixed system. The algorithms for precession and nutation provide the motion of the

3The mean ecliptic is always implied. This is the smoothly moving plane that does not undergo the periodic
oscillations of the instantaneous orbital plane of the Earth.
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Table 5.1 Precession-Nutation: Old & New
Values in arcseconds at J2000.0

Quantity Old value New value New-0ld
General precession in longitude (/cen) 5029.0966 5028.796195 —0.3004
Mean obliquity 84381.448 84381.406 —0.042
Mean obliquity rate (/cen) —46.8150 —46.836769 —0.0218
In-phase nutation amplitudes:
18.6-year longitude —17.1966 —17.2064161 —0.0098
18.6-year obliquity 9.2025 9.2052331 0.0027
9.3-year longitude 0.2062 0.2074554 0.0013
9.3-year obliquity —0.0895 —0.0897492 —0.0002
annual longitude 0.1426 0.1475877 0.0050
annual obliquity 0.0054 0.0073871 0.0020
semiannual longitude —1.3187 —1.3170906 0.0016
semiannual obliquity 0.5736 0.5730336 —0.0006
122-day longitude —0.0517 —0.0516821 0.0000
122-day obliquity 0.0224 0.0224386 0.0000
monthly longitude 0.0712 0.0711159 —0.0001
monthly obliquity —0.0007 —0.0006750 0.0000
semimonthly longitude —0.2274 —0.2276413 —0.0002
semimonthly obliquity 0.0977 0.0978459 0.0001

equator, as appropriate for most observations, but generally use a moving ecliptic as a reference
plane for at least some of the angles involved (there are different formulations of precession using
different angle sets). This allows the precession and nutation transformations to properly account
for the motion of the equinox as well as that of the equator. The precession of the ecliptic is
obtained from theory (although indirectly tied to observations through the JPL DE405 ephemeris),
as are the high-order (unobserved) components of the precession of the equator. However, because
of the mix of theory and observation that is involved in the final expressions, raw corrections to
rates of precession from VLBI observations will not in general propagate exactly to the familiar
precession quantities.

The changes in the amplitudes of the nutation components are also not directly taken from
these observations; instead, a new nutation theory is developed and fit to observations by allowing
a small number of geophysical constants to be free parameters. These parameters are constants
in a “transfer function” that modifies the amplitudes of the terms from a rigid-Earth nutation
development. Since there are fewer solved-for geophysical constants than the number of terms with
observed amplitudes, the fit cannot be perfect. For the TAU 2000A model, 7 geophysical parameters
were determined based on the observed amplitudes of 21 nutation terms (prograde and retrograde
amplitudes for each) together with the apparent change in the rate of precession in longitude. Note
that the number of observational constraints and the number of free parameters in the model are
both quite small compared to the 1365 terms in the new, full nutation series.

Table 5.1 compares the old and new values, at epoch J2000.0, of some of the primary quantities
involved in the precession and nutation algorithms. In the table, all quantities are in arcseconds,
and the rates (marked /cen) are per Julian century of TDB (or TT). The longitude components
should be multiplied by the sine of the obliquity (/0.3978) to obtain the corresponding motion of
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the pole on the celestial sphere. The new mean obliquity at J2000.0 is 23° 26’ 21406. The theories
from which the values are taken are:

e Old precession: Lieske et al. (1977), based on the IAU (1976) values for general precession
and the obliquity at J2000.0, shown in the table

e Old nutation: 1980 TAU Theory of Nutation: Wahr (1981), based on Kinoshita (1977); see
report of the IAU working group by Seidelmann (1982)

e New precession: P03 solution in Capitaine et al. (2003); see report of the IAU working group
by Hilton et al. (2006)

e New nutation: Mathews et al. (2002) (often referred to as MHB), based on Souchay et al.
(1999); series listed at URL 14

The new precession development will probably be formally adopted by the TAU in 2006. The
MHB nutation was adopted in res. B1.6 of 2000, even though the theory had not been finalized at
the time of the IAU General Assembly of that year. Used together, these two developments yield
the computed path of the Celestial Intermediate Pole (CIP) as well as that of the true equinox.
The formulas given below are based on these two developments.

5.4 Formulas

In the development below, precession and nutation are represented as 3x3 rotation matrices that
operate on column 3-vectors. The latter are position vectors in a specific celestial coordinate
system — which must be stated or understood — with components that are cartesian (rectangular)
coordinates. They have the general form

Ty d cosd cos
r=|r, | =] dcosdsina (5.1)
T, d sin é

where « is the right ascension, ¢ is the declination, and d is the distance from the specified origin.
For stars and other objects “at infinity” (beyond the solar system), d is often simply set to 1. The
celestial coordinate system being used will be indicated by a subscript, e.g., r . zs- If we have the
vector r in some coordinate system, then the right ascension and declination in that coordinate
system can be obtained from

a = arctan (r,/r3)

d = arctan (rz/q/rg + rz%) (5.2)

where r,, 7y, and r, are the three components of r. A two-argument arctangent function (e.g.,
atan2) will return the correct quadrant for « if r, and r, are provided separately.

In the context of traditional equatorial celestial coordinate systems, the adjective mean is applied
to quantities (pole, equator, equinox, coordinates) affected only by precession, while true describes
quantities affected by both precession and nutation. This is a computational distinction only, since
precession and nutation are simply different aspects of the same physical phenomenon. Thus, it is
the true quantities that are directly relevant to observations; mean quantities now usually represent
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an intermediate step in the computations, or the final step where only very low accuracy is needed
(10 arcseconds or worse) and nutation can be ignored.

Thus, a precession transformation is applied to celestial coordinates to convert them from
the mean equator and equinox of J2000.0 to the mean equator and equinox of another date, ¢.
Nutation is applied to the resulting coordinates to transform them to the true equator and equinox
of t. These transformations should be understood to be inherently geocentric rotations and they
originate in dynamical theories. Generally we will be starting with celestial coordinates in the
GCRS, which are obtained from basic ICRS data by applying the usual algorithms for proper
place.” As discussed in Chapter 3, the ICRS is not based on a dynamically defined equator and
equinox and so neither is the GCRS. Therefore, before we apply precession and nutation — and
if we require a final accuracy of better than 0.02 arcsecond — we must first apply the frame bias
correction (section 3.5) to transform the GCRS coordinates to the dynamical mean equator and
equinox of J2000.0. Schematically,

[

frame bias

I
’ mean equator & equinox of J2000.0 ‘

precession

4

’ mean equator & equinox of ¢ ‘

nutation

4

’ true equator & equinox of ¢ ‘

Mathematically, this sequence can be represented as follows:
Ttrue(t) = N(t) P(t) B Taers (53)

where ¢ is a direction vector with respect to the GCRS and ry,(y) is the equivalent vector
with respect to the true equator and equinox of t. N(¢) and P(t) are the nutation and precession
rotation matrices, respectively. The remainder of this chapter shows how to compute the elements
of these matrices. B is the (constant) frame-bias matrix given in section 3.5.
The transformation from the mean equator and equinox of J2000.0 to the mean equator and
equinox of ¢ is simply
Tmean(t) = P(t) T'mean(J2000.0) (54)

4Computing proper place involves adjusting the catalog place of a star or other extra-solar system object for proper
motion and parallax (where known), gravitational light deflection within the solar system, and aberration due to the
Earth’s motions. For a solar system object there are comparable adjustments to its position vector taken from a
barycentric gravitational ephemeris. See section 1.3. In conventional usage, an apparent place can be considered to
be a proper place that has been transformed to the true equator and equinox of date. The details of the proper
place computations are beyond the scope of this circular but are described in detail in many textbooks on positional
astronomy, and in Hohenkerk et al. (1992), Kaplan, et al. (1989), and Klioner (2003).
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and the reverse transformation is

Fmean(J2000.0) = PT(t) Tmean(t) (55)

where PT(t) is the transpose of P(t).

What is described above are all conventional, equinox-based transformations. The equinox is
the traditional origin of right ascension. An alternative transformation has been developed based on
another point on the celestial equator called the Celestial Intermediate Origin (CIO); see res. B1.8
of 2000. The alternative scheme has been introduced because the equinox is based on a barycentric
concept (the ecliptic, the Earth’s mean orbit) that is not relevant to a geocentric system; further-
more, the equinox suffers from ambiguity of definition below the 0.1 arcsecond level. Additionally,
the new scheme cleanly separates different aspects of Earth orientation in the overall transforma-
tion between the terrestrial and celestial coordinate systems. The conventional transformations are
described in this chapter because of widespread current usage and the fact that even the newest
theories of precession and nutation provide the angles needed for these transformations. The new
transformation, which combines frame bias, precession, and nutation into a single matrix, is given in
section 5.4.3 and is described more fully in Chapter 6, where the CIO is introduced and explained.

The true celestial pole of date t — the Celestial Intermediate Pole (CIP) — has, by definition,
unit vector coordinates (0,0,1) with respect to the true equator and equinox of date. Therefore we
can obtain the computed coordinates of the CIP with respect to the GCRS by simply reversing the
transformation of eq. 5.3:

X 0
Computed position of CIP:  rqopg Y | =BTPT#) N () | 0
Z 1
(NPB)g,
= (NPB)32 (5.6)
(NPB)33

where NPB = N()P(t)B

and where the superscript T’s indicate that the transpose of the matrix is used. Daily values of
the elements of the combined matrix NPB are listed in The Astronomical Almanac.

The IERS Conventions (2003) list series expansions that directly provide X and Y, the two
most rapidly changing components of the pole position unit vector. Daily values of X and Y are
also listed in The Astronomical Almanac. The values of X and Y are given in arcseconds and
are converted to dimensionless unit vector components simply by dividing them by the number of
arcseconds in one radian, 206264.806247....  Also, then, Z = v/1 — X2 — Y2, The values of X
and Y are used in the new transformation scheme discussed in section 5.4.3 and in several places
in Chapter 6.

5.4.1 Formulas for Precession

To construct the precession matrix for the transformation of coordinates from one date to another,
we must evaluate short polynomials for the angles involved. The expressions for these angles in
the IAU 2000A model, given below, have only a single time argument, since precession from or
to J2000.0 (actually, the TDB equivalent of J2000.0) is assumed. As used in this circular (and
The Astronomical Almanac), the matrix P(¢) always denotes precession from J2000.0 (TDB) to
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another date, t. To precess in the opposite direction, the angles are the same but the transpose
of the precession matrix, PT(t), is used. To precess coordinates from one arbitrary date, t1, to
another, ts, it is necessary to precess them from #; to J2000.0 (using PT(#1)), then from J2000.0
to to (using P(t2)). Where high accuracy is not required, and ¢; and ¢2 are not more than a few
years apart, a simpler procedure for precession from t; to t9 is available and is given at the end of
this subsection.

All expressions given in this subsection are from Section 7 (P03 solution) of Capitaine et al.
(2003) and all coefficients are expressed in arcseconds. This is the theory of precession recommended
by the IAU Working Group on Precession and the Ecliptic (Hilton et al. 2006).

For a given TDB date and time ¢, let T" be the number of Julian centuries of TDB since
2000 Jan 1, 12" TDB. If the dates and times are expressed as Julian dates, then T = (t —
2451545.0)/36525. TT dates and times can be used equally well — the resulting error in pre-
cession is only a few x10~? arcseconds.

Then the mean obliquity of the ecliptic at J2000.0 (or the equivalent TDB date) is ¢y =
84381.406 arcseconds and let

Ya = 5038.481507 T — 1.0790069 T? — 0.00114045 T3 + 0.000132851 T* — 0.0000000951 T
wa = e —0.025754T + 0.0512623 T? — 0.00772503 T° — 0.000000467 T* 4 0.0000003337 T°

xa = 10.556403 7T — 2.3814292 T2 — 0.00121197 T2 4 0.000170663 T* — 0.0000000560 T° (5.7)
Equivalently, in notation appropriate for computer programs,

Ya=(((( — 0.0000000951 T
+ 0.000132851
0.00114045
- 1.0790069
5038.481507
0.0000003337
- 0.000000467 )
- 0.00772503 )
+ 0.0512623 )
— 0.025754 )T +¢o
xa=(((( - 0.0000000560 T
+ 0.000170663 ) T
- 0.00121197 )T
— 2.3814292 )T
+ 10556403 )T

~— — ~—

+ o+

wa = ((((

T
T
T
T
T
T
T (5.8)
T

The precession matrix is then simply P(t) = Rs(xa) Ri(—wa) R3(—%4) Ri(eo), where R; and
R are standard rotations about the x and z axes, respectively (see “Abbreviations and Symbols
Frequently Used” for precise definitions). This 4-angle precession formulation is comprised of

1. A rotation from the mean equator and equinox of J2000.0 to the mean ecliptic and equinox of
J2000.0. This is simply a rotation around the x-axis (the direction toward the mean equinox of
J2000.0) by the angle €y, the mean obliquity of J2000.0. After the rotation, the fundamental
plane is the ecliptic of J2000.0.
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2. A rotation around the new z-axis (the direction toward the ecliptic pole of J2000.0) by the
angle — 4, the amount of precession of the equator from J2000.0 to t.

3. A rotation around the new x-axis (the direction along the intersection of the mean equator
of t with the ecliptic of J2000.0) by the angle —w4, the obliquity of the mean equator of ¢
with respect to the ecliptic of J2000.0. After the rotation, the fundamental plane is the mean
equator of t.

4. A rotation around the new z-axis (the direction toward the mean celestial pole of t) by the
angle x 4, accounting for the precession of the ecliptic along the mean equator of . After the
rotation, the new x-axis is in the direction of the mean equinox of date.

If we let
Sl = gin (60) Cl = COS (60)
Sy = sin(—v4) Co = cos(—1a) (5.9)
Sz = sin(—wa) C3 = cos(—wa)
Sy = sin(xa) Cy = cos(xa)

then the precession matrix can also be written:

Cy1Cy — 5254C5 Cy1S52C1 + S4C3CC — 515453 C15251 + S4C3C551 + C15453
P(t)=| —54Cy — 5204C3 —85455C1 + C4C3C2C1 — 510453 —S545251 + C4C3C2S1 4+ C1C4S3
5253 —93C2C1 — 51C3 —53C251 + C3Cy
(5.10)
Existing applications that use the 3-angle precession formulation of Newcomb and Lieske can be
easily modified for the TAU 2000A precession, by replacing the current polynomials for the angles
Ca, za, and 04 with the following:

a4 = 2.650545 + 2306.083227 T + 0.2988499 T + 0.01801828 T — 0.000005971 T*
— 0.0000003173 T°
za = —2.650545 + 2306.077181 T + 1.0927348 T2 4 0.01826837 T3 — 0.000028596 T
— 0.0000002904 T° (5.11)
04 = 2004.1919037 — 0.4294934 T2 — 0.04182264 T2 — 0.000007089 T"*

—0.0000001274 T°

The 3-angle precession matrix is P(t) = Ra(—2z4) R2(64) R3(—C4), but any existing correct con-
struction of P using these three angles can still be used.

The expression for the mean obliquity of the ecliptic (the angle between the mean equator and
ecliptic, or, equivalently, between the ecliptic pole and mean celestial pole of date) is:

€ = € — 46.836769 T — 0.0001831 T2 + 0.00200340 T3 — 0.000000576 T* — 0.0000000434 T° (5.12)

where, as stated above, ¢g = 84381.406 arcseconds. This expression arises from the precession
formulation but is actually used only for nutation. (Almost all of the obliquity rate — the term
linear in 7" — is due to the precession of the ecliptic.)
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Where high accuracy is not required, the precession between two dates, 1 and to, not too far
apart (i.e., where |ty — t1| < 1 century), can be approximated using the rates of change of right
ascension and declination with respect to the mean equator and equinox of date. These rates are
respectively

~ 4612.16 4+ 2.78T
2004.19 — 0.86 T (5.13)

%

n

where the values are in arcseconds per century and 7" is the number of centuries between J2000.0
and the midpoint of ¢; and ty. If the dates are expressed as Julian dates, T' = ((t; + t2)/2 —
2451545.0)/36525. Then, denoting the celestial coordinates at ¢; by (a1,01) and those at to by
(042, 52)7

ay ~ a1+ 7(m+nsina; tandy)
dy ~ 01+ 7(ncosag) (5.14)

where 7 = to — t1, expressed in centuries. These formulas deteriorate in accuracy at high (or low)
declinations and should not be used at all for coordinates close to the celestial poles (how close
depends on the accuracy requirement and the value of 7) .

5.4.2 Formulas for Nutation

Nutation is conventionally expressed as two small angles, A, the nutation in longitude, and Ae, the
nutation in obliquity. These angles are measured in the ecliptic system of date, which is developed
as part of the precession formulation. The angle At is the small change in the position of the
equinox along the ecliptic due to nutation, so the effect of nutation on the ecliptic coordinates of
a fixed point in the sky is simply to add Ay to its ecliptic longitude. The angle Ae is the small
change in the obliquity of the ecliptic due to nutation. The true obliquity of date is ¢ = € + Ae.
Nutation in obliquity reflects the orientation of the equator in space and does not affect the ecliptic
coordinates of a fixed point on the sky.

The angles A and Ae can also be thought of as small shifts in the position of the celestial
pole (CIP) with respect to the ecliptic and mean equinox of date. In that coordinate system,
and assuming positive values for Ay and Ae, the nutation in longitude shifts the celestial pole
westward on the sky by the angle At sine, decreasing the pole’s mean ecliptic longitude by A.
Nutation in obliquity moves the celestial pole further from the ecliptic pole, i.e., southward in
ecliptic coordinates, by Ae. (Negative values of Ay and Ae move the pole eastward and northward
in ecliptic coordinates.)

The effect of nutation on the equatorial coordinates («,d) of a fixed point in the sky is more
complex and is best dealt with through the action of the nutation matrix, N(¢), on the equatorial
position vector, Tyeant)- Where high accuracy is not required, formulas that directly give the
changes to « and ¢ as a function of Ay and Ae are available and are given at the end of this
subsection.

The values of Ay and Ae are obtained by evaluating rather lengthy trigonometric series, of the
general form

%(S—i—ST sin ®; + C/ cos @ )
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N

Z(C’+C’T ) cos D; +SSln<I>) (5.15)

- K

where, in each term, &; = Z M; ; ¢;(T) (5.16)
j=1

For the IAU 2000A model, N=1365 and K=14. The 14 ¢;(T) are the fundamental arguments,
which are, except for one, orbital angles. The main time dependence of the nutation series enters
through these arguments. The expressions given below are all taken from Simon et al. (1994) and
all coefficients are in arcseconds.

The first eight fundamental arguments are the mean heliocentric ecliptic longitudes of the
planets Mercury through Neptune:

¢1 = 908103.259872 + 538101628.688982 T
92 = 655127.283060 + 210664136.433548 T’
93 = 361679.244588 + 129597742.283429T
¢4 = 1279558.798488 + 68905077.493988 T (5.17)
¢5 = 123665.467464 + 10925660.377991 T
¢ = 180278.799480 + 4399609.855732T
¢7 = 1130598.018396 + 1542481.193933 T
¢ = 1095655.195728 +  786550.320744 T

In all of these expressions, T is the number of Julian centuries of TDB since 2000 Jan 1, 12" TDB (or,
with negligible error, the number of Julian centuries of TT since J2000.0). In some implementations
it may be necessary to reduce the resulting angles, which are expressed in arcseconds, to radians
in the range 0—27. The ninth argument is an approximation to the general precession in longitude:

$o = 5028.8200 T + 1.112022 7> (5.18)

The last five arguments are the same fundamental luni-solar arguments used in previous nutation
theories, but with updated expresssions. They are, respectively, [, the mean anomaly of the Moon;
I, the mean anomaly of the Sun; F, the mean argument of latitude of the Moon; D, the mean
elongation of the Moon from the Sun, and 2, the mean longitude of the Moon’s mean ascending
node:

b0 =1 = 485868.249036 + 1717915923.2178 T + 31.8792 T2 + 0.051635 T — 0.00024470 T*

o1 =1 = 1287104.79305 + 129596581.0481 T — 0.5532 T2 + 0.000136 7> — 0.00001149 T*

b2 = F = 335779.526232 + 1739527262.8478 T — 12.7512 T2 — 0.001037 T? + 0.00000417 T*

d13 = D = 1072260.70369 + 1602961601.2090 T — 6.3706 T + 0.006593 T — 0.00003169 T**

da = Q = 450160.398036 — 6962890.5431 T + 7.4722 T2 + 0.007702 7> — 0.00005939 T*  (5.19)

The first step in evaluating the series for nutation for a given date is to compute the values of
all 14 fundamental arguments for the date of interest. This is done only once. Then the nutation
terms are evaluated one by one. For each term 4, first compute ®; according to eq. 5.16, using the
14 integer multipliers, M; ;, listed for the term; i.e., sum over M; ; x ¢; (where j=1-14). Then the
cosine and sine components for the term can be evaluated, as per eq. 5.15, using the listed values
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of the coefficients S;, S;, Cl, C;, C;, and S/ for the term. Generally it is good practice to sum the
terms from smallest to largest to preserve precision in the sums.

The entire IAU 2000A nutation series is listed at the end of this circular. About the first half
of the series consists of lunisolar terms, which depend only on [, I’, F, D, and Q (= ¢19 to ¢14).
In all of these terms, the first nine multipliers are all zero. The generally smaller planetary terms
comprise the remainder of the series. As an example of how the individual terms are computed
according to egs. 5.15 and 5.16, term 6 would be evaluated

AyYg = (—0.0516821 + 0.0001226 T) sin ®¢ — 0.0000524 cos $g
Aeg = ( 0.0224386 — 0.0000667 T") cos D¢ — 0.0000174 sin g
where ®g = @11 + 2012 — 2¢13 + 214

since Mpg 1 through Mg 19 are zero, and only ¢11 through ¢14 are therefore relevant for this term. It
is assumed that all the ¢; have been pre-computed (for all terms) using the appropriate value of T'
for the date and time of interest. A printed version of a 1365-term nutation series is obviously not
the most convenient form for computation; it is given here only for the record, since the full series
has not previously appeared in print. As noted earlier, the series is available as a pair of plain-text
computer files at URL 14, and the SOFA and NOVAS software packages (URL 7, URL 8) include
subroutines for evaluating it. There are also shorter series available where the highest precision is
not required. The IERS web site provides, in addition to the full IAU 2000A series, an IAU 2000B
series, which has only 77 terms and duplicates the IAU 2000A results to within a milliarcsecond for
input times between 1995 and 2050. NOVAS also provides a subroutine that evaluates a truncated
series, with 488 terms, that duplicates the full series to 0.1 milliarcsecond accuracy between 1700
and 2300.

Once the nutation series has been evaluated and the values of Ay and Ae are available, the nu-
tation matrix can be constructed. The nutation matrix is simply N(¢) = Ry(—€¢) Rg(—Avy) Ry (e),
where, again, R; and Rg are standard rotations about the x and z axes, respectively (see “Abbre-
viations and Symbols Frequently Used” for precise definitions), and €’ = e+ Ae¢ is the true obliquity
(compute € using eq. 5.12). This formulation is comprised of

1. A rotation from the mean equator and equinox of ¢ to the mean ecliptic and equinox of ¢.
This is simply a rotation around the x-axis (the direction toward the mean equinox of ¢) by
the angle €, the mean obliquity of t. After the rotation, the fundamental plane is the ecliptic
of ¢t.

2. A rotation around the new z-axis (the direction toward the ecliptic pole of ¢) by the angle
—A1), the amount of nutation in longitude at t. After the rotation, the new x-axis is in the
direction of the true equinox of ¢.

3. A rotation around the new x-axis (the direction toward the true equinox of ¢) by the angle
—¢’, the true obliquity of ¢t. After the rotation, the fundamental plane is the true equator of
t, orthogonal to the computed position of the CIP at t¢.

If we let
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S1 = sin(e)
Sy = sin(—Av)
Sz = sin(—e— Ae¢)

C; = cos(e)
Cy = cos(—Av) (5.20)
C3 = cos(—e— Ae)

then the nutation matrix can also be written:

Co SoCy 595
N(t) = —S5,C3  (C3CCT — 5183 C3C551 + C155 (5.21)
5283 —=53C2C1 — 5103 —S3C251 + C3C

Where high accuracy is not required, coordinates corrected for nutation in right ascension and
declination can be obtained from

oy~ ap + A (cos€ + sin € sin oy, tan 6, ) — A€ cos ay, tan iy,
8 ~ Om + At sin€ cos o + Ae sinay, (5.22)

where (o, ) are coordinates with respect to the mean equator and equinox of date (precession
only), (a4, d¢) are the corresponding coordinates with respect to the true equator and equinox of
date (precession + nutation), and € is the true obliquity. Note the tan dy, factor in right ascension
that makes these formulas unsuitable for use close to the celestial poles.

The traditional formula for the equation of the equinoxes (the difference between apparent and
mean sidereal time) is At cos €/, but in recent years this has been superceded by the more accurate
version given in eq. 2.14.

5.4.3 Alternative Combined Transformation

The following matrix, C(t), combines precession, nutation, and frame bias and is used to transform

vectors from the GCRS to the Celestial Intermediate Reference System (CIRS). The CIRS is defined

by the equator of the CIP and an origin of right ascension called the Celestial Intermediate Origin

(CIO). The CIO is discussed extensively in Chapter 6. There, the CIRS is symbolized E,; it is

analogous to the true equator and equinox of date, but with a different right ascension origin.
The matrix C(t) is used in the sense

Temms = C(t) Tacrs (5-23)

and the components of C(t), as given in the IERS Conventions (2003) and The Astronomical
Almanac, are

1-bX?%2 —bXY -X
C(t) = Rs(—s) —bXY 1-0bY? -Y (5.24)
X Y 1-b(X%2+Y?)

where X and Y are the dimensionless coordinates of the CIP in the GCRS (unit vector components),
b=1/(1+2), Z=+v1—X?2—Y?2 and s is the CIO locator, a small angle described in Chapter 6.
All of these quantities are functions of time. Rg is a standard rotation around the z axis; see
“Abbreviations and Symbols Frequently Used” for a precise definition.
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5.4.4 Observational Corrections to Precession-Nutation

The IERS still publishes daily values of the observed celestial pole offsets, despite the vast improve-
ment to the pole position predictions given by the IAU 2000A precession-nutation model. The
offsets now have magnitudes generally less than 1 mas. The fact that they are non-zero is due
in part to an effect of unpredictable amplitude and phase called the free core nutation (or nearly
diurnal free wobble), caused by the rotation of the fluid core of the Earth inside the ellipsoidal
cavity that it occupies. The free core nutation appears as a very small nutation component with a
period of about 430 days. Any other effects not accounted for in the adopted precession-nutation
model will also appear in the celestial pole offsets. In any event, the celestial pole offsets are now
so small that many users may now decide to ignore them. However, it is worth noting again that,
by definition, the Celestial Intermediate Pole (CIP) includes these observed offsets.

The IERS now publishes celestial pole offsets with respect to the IAU 2000A precession-nutation
model only as dX and dY — corrections to the pole’s computed unit vector components X and
Y in the GCRS (see eq. 5.6 and following notes). The IERS pole offsets are published in units
of milliarcseconds but they can be converted to dimensionless quantities by dividing them by the
number of milliarcseconds in one radian, 206264806.247... . Then, the observationally corrected
values of X and Y are

Xeor = X +dX and Yeor =Y +dY (5.25)

The corrected values, expressed as dimensionless quantities (unit vector components), are used,
e.g., in the matrix C given in sections 5.4.3 and 6.5.3. That is, in eqgs. 5.24 and 6.18, assume
X =Xy and Y = Y.

The ecliptic-based pole celestial offsets, dy and de, which are used to correct the nutation
theory’s output angles Ay and Ae, are no longer supplied (actually, they are supplied but only for
the old pre-2000 precession-nutation model). Software that has not been coded to use X and Y
directly — which includes all software developed prior to 2003 — will need a front-end to convert
the IERS dX and dY values to dip and de. A derivation of a conversion algorithm and several
options for its implementation (depending on the accuracy desired) are given by Kaplan (2003).
Succinctly, given dimensionless dX and dY values for a given date ¢, let

ax’ dx
v’ | =P@)| dy (5.26)
A dz

where P(t) is the precession matrix from J2000.0 to date ¢, and we can set dZ= 0 in this approxi-
mation, which holds for only a few centuries around J2000.0. Then we compute the ecliptic-based
correction angles in radians using

dip = dX'/sine and de =dY’ (5.27)

where € is the mean obliquity of the ecliptic of date ¢, computed according to eq 5.12. The obser-
vationally corrected values of Ay and Ae are obtained simply by adding dy and de, respectively:

A1/)001‘ - A¢ + dw and AECOI‘ — AE + de (528)

where care must be taken to ensure that all angles are expressed in the same units. The corrected
values are used in forming the nutation matrix N(¢) and in other nutation-related expressions. That
is, in egs. 5.20 and 5.22, assume AY = Atheor and Ae = Aecor. At the same time, the corrected
value of Ay should be used in forming the equation of the equinoxes using eq. 2.14.



Chapter 6

Modeling the Earth’s Rotation

Relevant IAU resolutions: B1.6, B1.7, B1.8 of 2000

Summary Res. 1.8 of 2000 establishes two new reference points in the plane of the
moving (instantaneous) equator for the measurement of Earth rotation: the point on
the geocentric celestial sphere is called the Celestial Intermediate Origin (CIO) and the
point on the surface of the Earth is called the Terrestrial Intermediate Origin (TIO).
The CIO and TIO are specific examples of a concept called a non-rotating origin that
was first described by Guinot (1979, 1981).

The Earth Rotation Angle, 6, is the geocentric angle between the directions of
the CIO and TIO, and provides a new way to represent the rotation of the Earth in
the transformation from terrestrial to celestial systems or vice versa. Traditionally,
Greenwich sidereal time, which is the hour angle of the equinox with respect to the
Greenwich meridian, has served this purpose. The CIO and TIO are defined in such a
way that 6 is a linear function of Universal Time (UT1) and independent of the Earth’s
precession and nutation; it is a direct measure of the rotational angle of the Earth around
the Celestial Intermediate Pole (see Chapter 5). Since none of these statements holds
for sidereal time, the scheme based on the CIO, TIO, and 6 represents a simplification of
the way the rotation of the Earth is treated. In particular, the transformation between
Earth-fixed and space-fixed reference systems can now be specified by three rotation
matrices that are independent of each other: one for polar motion, one for “pure”
rotation (i.e., #), and one for precession-nutation.

The recent TAU resolutions do not eliminate sidereal time or the use of the equinox
as a fundamental reference point. Instead, the resolutions establish an alternative way
of dealing with Earth rotation. The comparison between the two schemes can be il-
luminating. For example, the CIO helps to clarify the relationship between sidereal
time and the Earth’s rotation, since 6 is now the “fast term” in the formula for sidereal
time as a function of UT1. The remaining terms comprise the equation of the origins
and represent the accumulated amount of precession and nutation along the equator
as a function of time. The equation of the origins is the length of the arc between the
equinox and the CIO.

50



MODELING THE EARTH’S ROTATION ol

6.1 A Messy Business

In the computation of the positions of celestial objects with respect to an Earth-fixed system — or,
equivalently, in the transformation between terrestrial and celestial coordinate systems — sidereal
time has conventionally represented the Earth’s rotation about its axis. For example, the hour
angle of an object is simply the local apparent sidereal time minus the object’s apparent right
ascension with respect to the true equator and equinox of date (see section 2.6.2). Once its hour
angle and declination are available, the object’s zenith distance and azimuth, or its coordinates
with respect to some ground-based instrumental system, can be easily obtained. The same result
can be accomplished by a direct transformation between the celestial and terrestrial coordinate sys-
tems, conventionally represented by a series of rotation matrices, one each for precession, nutation,
sidereal time, and polar motion.

Yet there is something untidy about these procedures. The computation of apparent sidereal
time mixes quantities related to Earth rotation, precession, and nutation (see egs. 2.10-2.14).
Because sidereal time is defined as the hour angle of the equinox, the precession of the equinox
in right ascension must be a part of the expression for sidereal time (the terms in parentheses in
eq. 2.12), and the mean sidereal day is thereby shorter than the rotation period of the Earth by
about 0°008. Nutation also appears, in the equation of the equinoxes (eqs. 2.13 & 2.14). The
result is that in the computation of hour angle, precession and nutation enter twice: once in the
sidereal time formula and again in the computation of the star’s apparent right ascension; the two
contributions cancel for stars on the equator. Similarly, in the transformation between the celestial
and terrestrial coordinate systems, precession and nutation each enter into two of the rotation
matrices, and none of the matrices represents Earth rotation alone.

A consequence of this way of doing things is that whenever improvements are made to the
theory of precession, the numerical coefficients in the expression for sidereal time must also change.
This was not an issue for most of the twentieth century, since no adjustments were made to the
standard precession algorithm, and the expression for mean sidereal time derived from Newcomb’s
developments was used without much thought given to the matter. It was the change to this
expression, necessitated by the adjustment of the precession constant in the IAU (1976) System
of Astronomical Constants, that first motivated the search for a fundamental change of procedure.
At about the same time, new high-precision observing techniques, such as VLBI and lunar laser
ranging, were being applied to the study of all components of the Earth’s rotation, and a review
of the basic algorithms seemed appropriate. In particular, there was interest in constructing a
new geometrical picture and set of expressions for the orientation of the Earth as a function of
time that would cleanly separate the effects of rotation, precession and nutation, and polar motion.
Furthermore, since VLBI is not sensitive to the equinox, a procedure that used a different reference
point seemed desirable.

To bring the Earth’s rotation period explicitly into the terrestrial—celestial transformation, we
must define an angle of rotation about the Earth’s axis. As described in Chapter 5, what we
specifically mean by “the Earth’s axis” is the line through the geocenter in the direction of the
Celestial Intermediate Pole (CIP). The angle of rotation about this axis must be measured with
respect to some agreed-upon direction in space. Since the CIP moves small amounts during one
rotation of the Earth (~0.1 arcsecond with respect to the stars and ~0.005 arcsecond with respect
to the Earth’s crust), the reference direction cannot be simply a fixed vector or plane in inertial
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space. What we need is an appropriate azimuthal' origin — a point in the moving equatorial plane,
which is orthogonal to the CIP.

6.2 Non-Rotating Origins

The reference point that we define must be such that the rate of change of the Earth’s rotation
angle, measured with respect to this point, is the angular velocity of the Earth about the CIP. As
the CIP moves, the point must move to remain in the equatorial plane; but the point’s motion must
be such that the measured rotation angle is not contaminated by some component of the motion
of the CIP itself.

The concept of a “non-rotating origin” (NRO) on the equator can be applied to any rotating
body. The NRO idea was first described by Bernard Guinot (Guinot 1979, 1981) and further
developed by Nicole Capitaine and collaborators (Capitaine et al. 1986; Capitaine 1990; Capitaine
& Chollet 1991; Capitaine et al. 2000; Capitaine 2000). The condition on the motion of such a
point is simple: as the equator moves, the point’s instantaneous motion must always be orthogonal
to the equator. That is, the point’s motion at some time ¢ must be directly toward or away from the
position of the pole of rotation at . Any other motion of the point would have a component around
the axis/pole and would thus introduce a spurious rate into the measurement of the rotation angle
of the body as a function of time. The point is not unique; any arbitrary point on the moving
equator could be made to move in the prescribed manner. For the Earth, the difference between
the motion of a non-rotating origin and that of the equinox on the geocentric celestial sphere is
illustrated in Fig. 6.1.

As illustrated in the figure, the motion of the non-rotating origin, o, is always orthogonal to the
equator, whereas the equinox has a motion along the equator (the precession in right ascension).
How do we specify the location of a non-rotating origin? There are three possibilities, outlined
in the Formulas section of this chapter. In the most straightforward scheme, one simply uses the
GCRS right ascension of o obtained from a numerical integration (the GCRS is the “geocentric
ICRS”). Alternatively, the position of o can be defined by a quantity, s, that is the difference
between the lengths of two arcs on the celestial sphere. Finally, one can specify the location of o
with respect to the equinox, Y: the equatorial arc Yo is called the equation of the origins. What-
ever geometry is used, the position of o ultimately depends on an integral over time, because the
defining property of o is its motion — not a static geometrical relationship with other points or
planes. The integral involved is fairly simple and depends only on the coordinates of the pole and
their derivatives with respect to time. The initial point for the integration can be any point on the
moving equator at any time tg.

1The word “azimuthal” is used in its general sense, referring to an angle measured about the z-axis of a coordinate
system.
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Figure 6.1 Motion of a non-rotating origin, o, compared with that of the true
equinox, Y. “Snapshots” of the positions of the points are shown at three successive
times, t1, t2, and t3. The positions are shown with respect to a geocentric reference
system that has no systematic rotation with respect to a set of extragalactic objects.
The ecliptic is shown in the figure as fixed, although it, too, has a small motion in
inertial space.

So far we have discussed a non-rotating origin only on the celestial sphere, required because of
the movement of the CIP in a space-fixed reference system. But there is a corresponding situation
on the surface of the Earth. The CIP has motions in both the celestial and terrestrial reference
systems. Its motion in the celestial system is precession-nutation and its motion in the terrestrial
system is polar motion, or wobble. From the point of view of a conventional geodetic coordinate
system “attached” to the surface of the Earth (i.e., defined by the specified coordinates of a group
of stations), the CIP wanders around near the geodetic pole in a quasi-circular motion with an
amplitude of about 10 meters (0.3 arcsec) and two primary periods, 12 and 14 months. Thus the
equator of the CIP has a slight quasi-annual wobble around the geodetic equator. Actually, it
is better thought of in the opposite sense: the geodetic equator has a slight wobble with respect
to the equator of the CIP. That point of view makes it is a little clearer why a simple “stake in
the ground” at the geodetic equator would not be suitable for measuring the Earth rotation angle
around the CIP. The situation is orders of magnitude less troublesome than that on the celestial
sphere, but for completeness (and very precise applications) it is appropriate to define a terrestrial
non-rotating origin, designated w. It stays on the CIP equator, and assuming that the current
amplitude of polar motion remains approximately constant, w will bob north and south by about
10 m in geodetic latitude every year or so and will have a secular eastward motion in longitude
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of about 1.5 mm/cen. The exact motion of w depends, of course, on what polar motion, which is
unpredictable, actually turns out to be.

The two non-rotating origins, o and w, are called the Celestial Intermediate Origin (CIO) and
the Terrestrial Intermediate Origin (TIO). Both lie in the same plane — the equator of the CIP.
The Earth Rotation Angle, 8, is defined as the geocentric angle between these two points. The
angle 6 is a linear function of Universal Time (UT1). The formula, given in the note to res. B1.8 of
2000, is simply 6 = 27 (0.7790572732640 + 1.00273781191135448 Dy/), where Dy is the number of
UT1 days from JD 2451545.0 UT1. The formula assumes a constant angular velocity of the Earth:
no attempt is made to model its secular decrease due to tidal friction, monthly tidal variations,
changes due to the exchange of angular momentum between the atmosphere and the solid Earth,
and other phenomena. These effects will be reflected in the time series of UT1-UTC or AT values
(see Chapter 2) derived from precise observations.

The expression given above for 0 is now the “fast term” in the formula for mean sidereal time;
see eq. 2.12. It accounts for the rotation of the Earth, while the other terms account for the motion
of the equinox along the equator due to precession.

The plane defined by the geocenter, the CIP, and TIO is called the TIO meridian. For most
ordinary astronomical purposes the TIO meridian can be considered to be identical to what is often
referred to as the Greenwich meridian. The movement of this meridian with respect to a conven-
tional geodetic system is important only for the most precise astrometric/geodetic applications.
It is worth noting that the TIO meridian, and the zero-longitude meridians of modern geodetic
systems, are about 100 m from the old transit circle at Greenwich (Gebel & Matthews 1971).
The term “Greenwich meridian” has ceased to have a technical meaning in the context of precise
geodesy — despite the nice line in the sidewalk at the old Greenwich observatory. This has become
obvious to tourists carrying GPS receivers!

6.3 The Path of the CIO on the Sky

If we take the epoch J2000.0 as the starting epoch for evaluating the integral that provides the
position of the CIO, the only mathematical requirement for the initial point is that it lie on the
instantaneous (true) equator of that date — its position along the equator is arbitrary. By conven-
tion, however, the initial position of the CIO on the instantaneous equator of J2000.0 is set so that
equinox-based and CIO-based computations of Earth rotation yield the same answers; we want the
hour angle of a given celestial object to be the same, as a function of UT1 (or UTC), no matter
how the calculation is done. For this to happen, the position of the CIO of J2000.0 must be at
GCRS right ascension 0°0'00//002012. This is about 12.8 arcseconds west of the true equinox of
that date.

Since the CIO rides on the instantaneous equator, its primary motion over the next few millenia
is southward at the rate of precession in declination, initially 2004 arcseconds per century. Its rate
of southward motion is modulated (but never reversed) by the nutation periodicities. Its motion
in GCRS right ascension is orders of magnitude less rapid; remember that the CIO has no motion
along the instantaneous equator, and the instantaneous equator of J2000.0 is nearly co-planar with
the GCRS equator (xy-plane). The motion of the CIO in GCRS right ascension over the next few
millenia is dominated by a term proportional to t3; the GCRS right ascension of the CIO at the
beginning of year 2100 is only 0”068; at the beginning of 2200 it is 0/573; and at the beginning of
2300 it is 1/7941. Nutation does produce a very slight wobble in the CIO’s right ascension, but the
influence of the nutation terms is suppressed by several orders of magnitude relative to their effect
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on the position of the pole. We can say, therefore, that to within a few arcseconds error, the path
of the CIO on the celestial sphere over the next few centuries is nearly a straight line southward
along the GCRS a=0 hour circle.

Locus of CIO & Equinox Over Two Precession Cycles
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Figure 6.2 Locus of the CIO (solid line) and equinox (dashed line) on the celestial
sphere over 5x10% years, with respect to space-fixed coordinates. During this time
the equinox wraps around the figure twice and ends up approximately at the starting
point.

The solid line on the left side of Figure 6.2 indicates the locus of the CIO in the GCRS over
50,000 years — about two precession cycles. The ecliptic is shown as a dashed line. The initial
nearly straight southward motion from the starting point at J2000.0 is clearly shown. There are
occasional “cusps” in the CIO’s motion, where its secular motion comes to a temporary halt before
reversing. The first of these stationary points occurs in just over a quarter of a precession cycle,
as the section of the moving equator that is farthest south in ecliptic coordinates precesses to near
the GCRS a=0 hour circle. At that time, the CIO will exhibit only nutational oscillations around
a point that remains fixed on the celestial sphere to within 10 mas for almost a decade. Then its
motion resumes, this time northward and westward.” The motion of the equinox over the same
50,000-year time period begins at nearly the same point as the CIO (on the plot scale used, the
points overlap), but smoothly follows the ecliptic westward (to the right on the plot), wrapping
around twice and ending up essentially at the starting point.

6.4 Transforming Vectors Between Reference Systems

The reference points described above allow us to define three geocentric reference systems that
share, as a common reference plane, the instantaneous, or true, equator of date. The instantaneous
equator is now defined as the plane through the geocenter orthogonal to the direction of the CIP
at a given time, t. The three reference systems are:

2There is nothing profound about the stationary points or the dates on which they occur. If we had started the
CIO at GCRS right ascension 6" or 18" at J2000.0, it would have started at a stationary point.
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1. True equator and equinox of ¢ — azimuthal origin at the true equinox (1) of ¢

2. Celestial Intermediate Reference System (CIRS) — azimuthal origin at the Celestial Inter-
mediate Origin (CIO or o) of ¢

3. Terrestrial Intermediate Reference System (TIRS) — azimuthal origin at the Terrestrial In-
termediate Origin (TIO or w) of ¢

In this circular we will often refer to these reference systems by the symbols E., E;, and E,
respectively; E denotes an equatorial system, and the subscript indicates the azimuthal origin. E
rotates with the Earth whereas the orientations of E. and E, change slowly with respect to local
inertial space. The transformation between E, and E is just a rotation about the z-axis (which
points toward the CIP) by GAST, the angular equivalent of Greenwich apparent sidereal time.
The transformation between E, and E is a similar rotation, but by 6, the Earth Rotation Angle.
These two transformations reflect different ways — old and new — of representing the rotation of
the Earth.

A short digression into terrestrial, i.e., geodetic, reference systems is in order here. These
systems all have their origin at the geocenter and rotate with the crust of the Earth. Terrestrial
latitude, longitude, and height are now most commonly given with respect to a reference ellipsoid,
an oblate spheroid that approximates the Earth’s overall shape (actually, that best fits the geoid,
a gravitational equipotential surface). The current standard reference elliposid for most purposes
is that of the World Geodetic System 1984 (WGS 84), which forms the basis for the coordinates
obtained from GPS. The WGS 84 ellipsoid has an equatorial radius of 6,378,137 meters and a
polar flattening of 1/298.257223563. For the precise measurement of Earth rotation, however, the
International Terrestrial Reference System (ITRS) is used, which was defined by the International
Union of Geodesy and Geophysics (IUGG) in 1991. The ITRS is realized for practical purposes by
the adopted coordinates and velocities® of a large group of observing stations. These coordinates are
expressed as geocentric rectangular 3-vectors and thus are not dependent on a reference ellipsoid.
The list of stations and their coordinates is referred to as the International Terrestrial Reference
Frame (ITRF). The fundamental terrestrial coordinate system is therefore defined in exactly the
same way as the fundamental celestial coordinate system (see Chapter 3): a prescription is given
for an idealized coordinate system (the ITRS or the ICRS), which is realized in practice by the
adopted coordinates of a group of reference points (the ITRF stations or the ICRF quasars). The
coordinates may be refined as time goes on but the overall system is preserved. It is important to
know, however, that the ITRS/ITRF is consistent with WGS 84 to within a few centimeters; thus
for all astronomical purposes the GPS-obtained coordinates of instruments can be used with the
algorithms presented here.

Our goal is to be able to transform an arbitrary vector (representing for example, an instrumen-
tal position, axis, boresight, or baseline) from the ITRS (xWGS 84~GPS) to the GCRS. The three
equatorial reference systems described above — E.., E,, and E, — are waypoints, or intermediate
stops, in that process. The complete transformations are:

3The velocities are quite small and are due to plate tectonics and post-glacial rebound.



MODELING THE EARTH’S ROTATION o7

Equinox-Based Transformation CIO-Based Transformation
| ITRS or WGS 84 | | ITRS or WGS 84 |
I |
polar motion polar motion
U
’ E — Terrestrial Intermediate Ref. System ‘ ’ E, — Terrestrial Intermediate Ref. System ‘
I |
Greenwich apparent sidereal time Earth Rotation Angle
J Y
’ E, — true equator & equinox ‘ ’ E, — Celestial Intermediate Ref. System ‘
I |
equinox-based rotation for CIO-based rotation for
nutation + precession + frame bias nutation + precession + frame bias
U U

which are equivalent. That is, given the same input vector, the same output vector will result
from the two procedures. In the CIO-based transformation, the three sub-transformations (for
polar motion, Earth Rotation Angle, and nutation/precession/frame bias) are independent. That
is not true for the equinox-based method, because apparent sidereal time incorporates precession
and nutation. Each of the two methods could be made into a single matrix, and the two matrices
must be numerically identical. That means that the use of the CIO in the second method does not
increase the precision of the result but simply allows for a mathematical redescription of the overall
transformation — basically, a re-sorting of the effects to be taken into account. This redescription
of the transformation provides a clean separation of the three main aspects of Earth rotation, and
recognizes that the observations defining modern reference systems are not sensitive to the equinox.
It thus yields a more straightforward conceptual view and facilitates a simpler observational analysis
for Earth-rotation measurements and Earth-based astrometry.

These transformations are all rotations that pivot around a common point, the geocenter. Al-
though developed for observations referred to the geocenter, the same set of rotations can be applied
to observations made from a specific point on the surface of the Earth. (This follows from the as-
sumption that all points in or on the Earth are rigidly attached to all other points. The actual
non-rigidity — e.g., Earth tides — is handled as a separate correction.) In such a case, the com-
putations for parallax, light-bending, aberration, etc., must take into account the non-geocentric
position and velocity of the observer. Then the final computed coordinates are referred, not to the
GCRS, but rather to a proper reference system (in the terminology of relativity) of the observer.

We return to the more familiar problem mentioned at the beginning of the chapter: the com-
putation of local hour angle. In the usual equinox-based scheme, the apparent place® of the star or
planet is expressed with respect to the true equator and equinox of date (E. ). The local hour angle
is just h = GAST — a, + A, where GAST is Greenwich apparent sidereal time, o, is the apparent

4See footnote 1 on page 41.



58 MODELING THE EARTH’S ROTATION

right ascension of the object, measured with respect to the true equinox, and A is the longitude
of the observer (corrected, where necessary, for polar motion). Obviously these quantities must
all be given in the same units. In the CIO-based scheme, the apparent place would be expressed
in the Celestial Intermediate Reference System (E;), and h = 6 — o, + A, where 6 is the Earth
Rotation Angle and a, is the apparent right ascension of the object, measured with respect to the
CIO. (The recommended terminology is intermediate place for the objec