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Abstract. It is argued that the relativistic de�nitions of parallax, proper
motion and radial velocity consistent with an accuracy of 1 �as should be
considered only within a well-de�ned algorithm of relativistic reduction
of observational data. Such an algorithm is formulated and the corre-
sponding de�nitions of astrometric parameters are discussed.

1. Introduction

The accuracy of future space-based astrometric observations is expected to at-
tain a level of 1 �as. In this paper we brie
y describe a relativistic model of
space-based optical positional observations valid at such a high-accuracy level
and suggest, in particular, de�nitions of parallax, proper motion and radial
velocity compatible with general relativity at a level of 1 �as. Although the def-
initions are quite simple (see Klioner and Kopeikin, 1992), their interpretation
at such a high level of accuracy is rather tricky. Parallax and proper motion
are no longer two independent e�ects. Second-order e�ects due to parallax and
proper motion as well as the e�ects resulting from interaction between the two
e�ects are important. Moreover, parallax, proper motion and other astromet-
ric parameters are de�ned operationally and have some meaning only within
the particular model of relativistic reductions chosen. That is why the whole
relativistic model of observations must be considered. It is also clear that in
order to convert observed proper motion and radial velocity into true tangential
and radial velocities of the observed object, additional information is required.
Since that information is not always available, the concepts of \apparent proper
motion", \apparent tangential velocity" and \apparent radial velocity" are sug-
gested. These concepts represent useful information about the observed object
and should be distinguished from \true tangential velocity" and \true radial
velocity". De�nitions of all these concepts are discussed below.

Throughout this paper the following constraints on the various parameters
are used to decide if a particular e�ect should be retained to attain the accuracy
of 1 �as: (1) barycentric position of the observer: jxsj � 1 a:u:+ 2 � 106 km; (2)
barycentric velocity of the observer: j _xsj � 4 � 104 m/s; (3) parallax � � 100.

2. Relativistic model of positional observations

A relativistic model for optical positional observations having an accuracy of 1
�as is outlined below. It is assumed that the observations are performed from
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an Earth satellite or a space station whose position xs relative to the Barycen-
tric Reference System (BRS) of the solar system is known for any moment of
barycentric coordinate time t � TCB. The relativistic model to be discussed
below consists of several subsequent steps accounting for the following e�ects:

(1) aberration (e�ects vanishing together with the barycentric velocity of
the observer). This step converts the observed direction to the source s into the
unit BRS coordinate velocity of the light ray n at the point of observation xs;

(2) gravitational light de
ection for the source at in�nity. This step converts
n into the unit direction of propagation � of the light ray in�nitely far from the
solar system;

(3) coupling of �nite distance to the source and the gravitational light de-

ection in the gravitational �eld of the solar system. This step converts � into
a unit coordinate BRS direction k going from the source to the observer;

(4) parallax. This step converts k into a unit BRS direction l going from
the barycenter of the solar system to the source;

(5) proper motion. This step provides a reasonable parameterization of the
time dependence of l caused by the motion of the source relative to the BRS.

2.1. Aberration

The �rst step is to get rid of the aberrational e�ects related to the BRS velocity
of the observer. Let s denote the unit direction toward the source as observed by
the observer. Let p be the BRS coordinate velocity of the photon in the point
of observation. (p is directed from the source to the observer.) The unit BRS
coordinate direction of the light ray n = p=jpj can be computed as

s = �n+
1

c
f1 +

1

c2
f2 +

1

c3
f3 +O(c�4): (1)

This formula contains relativistic aberrational e�ects fi = fi(n; _xs) up to third-
order in 1=c. Explicit form of fi can be found in (Klioner, 1991; Klioner,
Kopeikin, 1992). Because of the �rst-order aberrational terms (classical aberra-
tion) the BRS coordinate velocity of the satellite must be known to an accuracy
of 10�3 m/s in order to attain an accuracy of 1 �as. For a satellite with the
BRS velocity j _xsj < 40 km/s, the �rst-order aberration is of the order of 2800,
the second-order e�ect may amount to 3.6 mas, and the third-order e�ects are
� 1 �as. Note also that the higher-order aberrational e�ects are nonlinear
with respect to the velocity of the satellite and cannot be divided into \annual"
and \diurnal" aberrations as can be done with the �rst-order aberration for an
Earth-bound observer.

2.2. Gravitational light de
ection

The next step is to account for the general-relativistic gravitational light defec-
tion, that is to convert n into the corresponding unit direction � of the light
propagation in�nitely far from the gravitating sources. Relativistic equations of
light propagation can be written in the form

xp(t) = xp(t0) + c� (t� t0) + �xp(t); (2)

where t0 is the moment of observation, xp(t0) is the position of the photon at the
moment of observation (This position obviously coincides with the position of
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the satellite at that moment xp(t0) = xs(t0).), � is the unit coordinate direction
of the light propagation at past null in�nity

� = lim
t!�1

c
�1 xp(t); (3)

and �xp is the sum of all the gravitational e�ects in the light propagation
(�xp(t0) = 0, lim

t!�1

� _xp(t) = 0). If time dependence of the gravitational �elds

produced by the matter outside the solar system is negligible, those �elds can be
neglected while computing �xp. Otherwise the external �elds must be taken into
account (e.g., for the observations of close binary stars, where the gravitational
�eld of the companion can cause an additional time-dependent light de
ection).

The largest contribution to �xp due to the solar system gravity comes from
the spherically symmetric components of the gravitational �elds of the massive
bodies (see, e.g., Klioner and Kopeikin, 1992). Depending on the problem and
the required accuracy, one can additionally consider the e�ects of quadrupole
moments of the bodies, their rotational and translational motion as well as
the post-post-Newtonian e�ect (Klioner, 1991a; Klioner, 1991b; Klioner and
Kopeikin, 1992). It is easy to see that not only the major planets should be
taken into account here, but also the Moon, Ceres and a dozen large satellites of
giant planets. Detailed estimates of various e�ects will be published elsewhere.

Coordinate velocity of the photon can be obtained by di�erentiating Eq.
(2): _xp = c�+ � _xp and then normalized to give the unit coordinate direction of
the light propagation at the moment of observation

n = � + g(n; � _xp(t0)): (4)

2.3. Coupling of �nite distance and gravitational de
ection

The next step is to convert � into a BRS direction from the source to the ob-
server. Let xs(t) be the coordinate of the satellite at the moment of observation
t and X(T ) be the position of the source at the moment of emission T = T (t)
of the observed signal. Let us denote

k(t) = R(t) =R(t); R(t) = xs(t)�X(T ); R(t) = jR(t)j: (5)

Vector k is related to � as (Klioner, 1991a):

� = k� k � (� _xp � k) =R+O(c�4): (6)

The only e�ect in � _xp to be accounted for here is the post-Newtonian gravita-
tional de
ection from the spherically symmetric part of the gravitational �eld of
the Sun. The explicit formulas will be published elsewhere. The e�ect amounts
to 10 �as for a source situated at a distance of 1 pc and observed at the limb of
the Sun. One can check that the e�ect is larger than 1 �as if jXj � 10 pc and
the source is observed within 2.3� from the center of the Sun. If at least one of
these conditions is violated one can put k = �.

2.4. Parallax

Now we have to get rid of the parallax (that is to transform k into a unit vector
l directed from the barycenter of the solar system to the source):

l(t) = X(T ) = jX(T)j: (7)



Relativistic De�nitions of Astrometric Parameters 311

Let the parallax of the source be de�ned as

�(t) = 1 a:u: = jX(T )j; (8)

the parallactic parameter � be given by

�(t) = �(t) xs(t) = 1 a:u:; (9)

and �nally the observed parallactic shift of the source be de�ned as

�(t) = l(t) � (�(t) � l(t)): (10)

With these de�nitions to su�cient accuracy one has

k = �l (1� j�j2 =2) + � (1 + l � �) + O(�3): (11)

The second-order e�ects in (11) proportional to �2 are less than 3 �as if jXj � 1
pc. The second-order terms can be safely neglected if jXj � 2 pc.

2.5. Proper motion

The last step of the algorithm is to provide a reasonable parametrization of the
time dependence of l and � caused by the motion of the source relative to the
solar system barycenter. The following simple model for the coordinates of the
source is adopted here

X(T ) = X0 +V�T +O(�T 2); (12)

where �T = T � T0, X0 = X(T0), and V is the BRS velocity of the source
evaluated at the initial epoch T0. This model allows one to consider single
stars or components of gravitationally bounded systems, periods of which are
much larger than the time span of observations. In more complicated cases
special solutions for binary stars, etc. should be considered. Depending on the
source and time span of the observations higher-order terms in (12) can also be
considered. Substituting (12) into de�nitions of l and � one gets

�(t) = �0 (1� l0 �V =X0�T +O(�T 2)); (13)

l = l0 + l0 � (V� l0) =X0 �T +O(�T 2); (14)

where X0 = jX0j, �0 = �(t0) = 1 a:u:=X0.
The signals emitted at moments T0 and T are received by the observer

at moments t0 and t, respectively. Corresponding moments of emission and
reception are related by the equations

c (t� T ) = jxs(t)�X(T )j (15)

and similar equation for t0 and T0. The relativistic e�ects in (15) can be shown
to be negligible. Let us denote �t = t � t0 as the time span of observations
corresponding to the time span of emission �T . These two time intervals are
related as

�t =
�
1 + c

�1 l0 �V
�
�T � c

�1 [xs(t)� xs(t0)] � l0 +O(�T 2): (16)
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The �rst term in (16) is linear with respect to �T , the second term represents
a quasi-periodic e�ect with an amplitude of about 500 s, giving a quasi-periodic
term in apparent proper motion of the source (see, Klioner and Kopeikin, 1992).
Eq. (16) results from a Taylor expansion of (15). Which terms of such an
expansion are important depends on many factors. For example, for a large
time span of observations terms quadratic in �T may become important.

It is easy to see from (13) that time dependence of parallax � can be used
to determine radial velocity of the source. This question has been investigated
in more detail in Dravins et al. (1999). The \true" tangential and radial com-
ponents of barycentric velocity V of the source can be de�ned by

Vtan = l0 � (V� l0); Vrad = l0 �V: (17)

Eqs. (13){(14) can be combined with (16) to get the time dependence of l and
� as seen by the observer. Collecting terms linear with respect to �t we get the
de�nition of apparent tangential velocity V

ap
tan as the linear term in l(t), and of

apparent radial velocity V
ap

rad
as the linear term in �(t):

V
ap

tan = Vtan

�
1 + c

�1
Vrad

�
�1

; V
ap

rad
= Vrad

�
1 + c

�1
Vrad

�
�1

: (18)

With these de�nition the simplest models for �(t) and l(t) as seen by the observer
read (the higher-order terms are neglected here):

�(t) = �0 � �
2
0 (V

ap

rad
= 1 a:e:) �t+ : : : ; (19)

l(t) = l0 + �ap�t + �ap c
�1 ([xs(t)� xs(t0)] � l0) + : : : ; (20)

�ap = �0 (V
ap
tan = 1 a:e:): (21)

Apparent proper motion is denoted �ap here. The factor
�
1 + c

�1
Vrad

�
�1

in (18)

has been discussed in, e.g., Stump� (1985) and Klioner and Kopeikin (1992).
This factor may become very large and is one of the possible explanations of
the well-known problem of superluminal motions in quasars and active nuclei of
galaxies.

If both V
ap
tan and V

ap

rad
can be determined from observations one can imme-

diately restore the \true" velocities Vtan and Vrad. However, even if it is not
the case Vap

tan and V
ap

rad
are useful by themselves. Note that the radial velocities

as measured by Doppler observations are a�ected by a number of factors not
in
uencing positional observations and do not coincide with either Vrad or V

ap

rad
.
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