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Abstract. Dynamical theories of the Earth's rotation like SMART97
(Bretagnon et al., 1998) are to be considered in a DGRS (dynamically
nonrotating geocentric reference system) (Brumberg et al., 1996). Such a
theory gives the explicit expressions in terms of TCG (Geocentric Coordi-
nate Time) of three Euler angles relating a DGRS to the ITRS (Interna-
tional Terrestrial Reference System). These angular quantities together
with their TCG derivatives enable one to get all Earth's rotation param-
eters. At the same time, the analysis of observations result in the val-
ues for slightly di�erent angles and their TCG derivatives characterizing
the relationship between the ITRS and a KGRS (kinematically nonro-
tating geocentric reference system). The di�erences between these two
sets of six quantities represent kinematical relativistic corrections (due
to geodesic precession, geodesic nutation and luni-planetary terms). The
paper presents these di�erences computed by means of the VSOP87 series
(Bretagnon and Francou, 1988). In particular, in analysing observations
at the microarcsecond level these expressions will permit an experimen-
tal check of geodesic precession in a more direct manner than it is done
nowadays (Bertotti et al., 1987).

1. Introduction

The aim of this paper is to supply numerical values for the quantities involved
in the relativistic barycenric and geocentric reference systems (RSs) de�ned in
Brumberg et al.(1996) and Brumberg (1997a). Using the VSOP87 series for
the motion of the major planets (Bretagnon and Francou, 1988) this work was
started in Brumberg et al.(1992) by computing the expressions for the geodesic
rotation vector and its derivative and in Bretagnon et al.(1997) by computing
the di�erences of the Euler angles for the geocentric rotation matrix relating
the dynamical and kinematical systems. Our aim is to compute the di�erences
of the Euler angles derivatives as well. In anticipating the space astrometry
projects of microarcsecond accuracy it enables one to consider completely the
e�ect of the geodesic rotation on the Earth's rotation parameters.
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2. Barycentric and geocentric RSs

In dealing with RSs we use the same notation as in Brumberg et al.(1996) and
Brumberg (1997a), i.e. B { barycentric, G { geocentric, V { VLBI, C { ecliptical,
Q { equatorial, D { dynamical, K { kinematical, + { rotating. At the barycentric
level we have three systems BRSV, BRSC and BRSQ with timescale t=TCB and
spatial coordinates x = (xi), xC = (xiC) and xQ = (xiQ), respectively. At the

geocentric level each of these systems generates by means of the BRS!GRS two
geocentric RSs, dynamically or kinematically nonrotating ones with respect to
the generating BRS. As a result, there will be six geocentric RSs, i.e. GRSV,
GRSC and GRSQ for D and K versions with timescale u=TCG and spatial
coordinates w = (wi), wC = (wiC) and wQ = (wiQ), respectively. If necessary, we

will distinguish D and K versions by writing w
q

i with q = 1 for version D and q =

0 for version K. One more geocentric system is GRS+ rotating with the Earth and
having spatial coordinates y = (yi). By identifying BRSV and GRS+ with ICRS
and ITRS, respectively, the problem is to determine all relationships between
these systems enabling one to obtain an unambiguous relativistic interpretation
of Earth's rotation parameters as well as related astronomical concepts.

At the barycentric level all three RSs are mutually related by the constant
rotation matrices

xC = PCx ; xQ = PQx : (2:1)

Very approximately

PQ = E; PC =

0
@ 1 0 0
0 cos " sin "
0 � sin " cos "

1
A ; (2:2)

where E stands for the unit matrix and " is the mean obliquity. This constant
rotation is conserved at the geocentric level in the relationships between V, C
and Q GRSs of the same type (with respect to D or K versions). The matrix
PC may be determined from the comparison of the VSOP87 planetary theories
(Bretagnon and Francou, 1988) with observations of the major planets within
BRSV (ICRS) background. Matrix PQ is to be determined at the geocentric
level by comparison of the Earth's rotation theory like SMART97 (Bretagnon
et al., 1998) with observations within GRS+ (ITRS) background (see below).

The relationship with GRS+ involves the Earth's rotation matrix P̂ (u)

y = P̂
q

(u)w
q
C = P̂

q

(u)PC w
q

= P̂
q

(u)PCP
T
Q w

q
Q : (2:3)

The Earth's rotation matrix may be expressed in terms of three Euler angles to
be determined by some Earth rotation theory. Following the traditional choice
by Tisserand (1891) and Smart (1953) we will use here

P̂
1

(u) = D3(')D1(��)D3(� ); P̂
0

(u) = D3('K)D1(��K)D3(� K); (2:4)

with elementary rotations

D1(�) =

0
@ 1 0 0
0 cos� sin �
0 � sin� cos�

1
A ; D2(�) =

0
@ cos� 0 � sin �

0 1 0
sin � 0 cos�

1
A ;
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D3(
) =

0
@ cos 
 sin 
 0
� sin 
 cos 
 0

0 0 1

1
A : (2:5)

The relationships between the D and K systems involve the geodesic rotation
matrix F

w
0

= (E � c�2F )w
1

; w
0
C = (E � c�2FC)w

1
C ; w

0
Q = (E � c�2FQ)w

1
Q; (2:6)

and

P̂
1

(u) = P̂
0

(u)(E � c�2FC); (2:7)

with
FC = PCFP

T
C ; FQ = PQFP

T
Q : (2:8)

Instead of rotation matrix F one may consider its equivalent vector representa-
tion

F ij = "ijkF
k ; "ijk =

1

2
(i� j)(j � k)(k � i); (2:9)

so that the matrix product in (2.6) may be reduced to

Fw = �"ijkF
jwk : (2:10)

The components of F kC and _F kC have been evaluated in Brumberg et al.(1992).
The relationships between barycentric and geocentric RSs are based on the

BRS!GRS transformation (Brumberg, 1995 and references therein)

u = t� c�2[A(t) + vkEr
k
E] + : : : ; (2:11)

wi = riE + c�2
n
[1
2
viEv

k
E + qF ik(t) +Dik(t)]rkE +Dikm(t)rkEr

m
E

o
+ : : : ; (2:12)

with
riE = xi � xiE(t); viE = _xiE(t); (2:13)

_A(t) = 1

2
v2E + �UE(xE); (2:14)

and

Dik(t) = �ik �UE(xE); Dijk(t) = 1

2
(�ija

k
E + �ika

j
E � �jka

i
E); (2:15)

where �UE(x) stands for the Newtonian potential of all solar system bodies except
the Earth, xiE , v

i
E and aiE being Earth's BRS position, velocity and acceleration,

respectively. This transformation is written for V versions of RSs. For C or Q
versions one should convert all V quantities to C or Q quantities, respectively.

Let t� be the BRS moment of time corresponding to an event with the GRS
coordinates (u; wi = 0) (Klioner and Voinov, 1993). Then u and t� are related
by the time equation

u = t� � c�2A(t�) + : : : : (2:16)

Hence,
t � t� = c�2vkEw

k + : : : : (2:17)
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Expanding the right-hand member of (2.12) in the vicinity of t� one gets the
inverse GRS!BRS transformation

t = u+ c�2[A(u) + zkEw
k] + : : : ; (2:18)

xi = wi + ziE(u) + c�2
h
(1
2
viEv

k
E � qF

ik
�Dik)wk �Dikmwkwm

i
+ : : : ; (2:19)

with functions ziE = ziE(u) characterizing the motion of the geocenter in terms
of TCG and determined by

ziE(u) = xiE(t
�): (2:20)

This inverse transformation is used, for example, to transform GRS space-time
coordinates of terrestrial ground stations into their BRS space-time coordinates.

3. K{D for Euler angles

The �rst of relations (2.3) for the dynamical version q = 1 represents a relation-
ship between GRS+ (ITRS) and DGRSC. The Euler angles ',  and � together
with their TCG derivatives result from the solution of the Earth's rotation equa-
tions written in the DGRSC. This solution may be thought of as consisting of
two parts, a Newtonian one corresponding to the formal Newtonian equations
of the Earth's rotation, and relativistic correction terms generated by the rela-
tivistic contributions to the right-hand sides of the Earth's rotation equations.
These dynamical corrections �', � and �� as well as their TCG derivatives are
neglected here due to their small size in the DGRSC (Brumberg, 1997b, Klioner,
1997, and references therein). For the Newtonian solution of the Earth's rotation
problem we choose here the SMART97 theory (Bretagnon et al., 1998). On the
other hand astronomical observations of the Earth's rotation may be interpreted
as performed in KGRSC resulting in the angles 'K,  K and �K and their TCG
derivatives. They di�er from their dynamical counterparts due to the geodesic
rotation vector FK . Using (2.4) and (2.7) it follows that

'� 'K = �
c�2

sin �

�
F 1

C sin + F 2

C cos 
�
; (3:1)

� � �K = c�2
�
F 1
C cos � F 2

C sin  
�
; (3:2)

and

 �  K = c�2
�
F 3

C �
cos �

sin �

�
F 1

C sin + F 2

C cos 
��
: (3:3)

In this way the matrix P̂ (u) is known (for both D and K versions) from the
Earth rotation theory. Having found the constant matrix PC from the planetary
motions one may determined the relationship between GRS� and GRSV from
the second of relations (2.3). The main plane of GRS+ is the equator of date.
Having determined the mutual orientation of GRS+ and GRSV one may �nd
the constant matrix PQ de�ning the main plane of GRSQ as a �xed plane for
some de�nite epoch. The inverse transformation GRSQ!BRSQ enables one to
�x the BRSQ.
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Expressions (3.1){(3.3)were evaluated �rst in (Bretagnon et al., 1997) using
the series of SMART97. The three main RSs considered in (Bretagnon et al.,
1997) are

Oxyz = GRSC; O��� = GRS+; O~�~�~� = D3(�)GRS
+;

� being the longitude of the axis associated with the principal moment of inertia

of the Earth. This means that the system O~�~�~� is a terrestrial system with
principal axes of inertia. Therefore, Bretagnon et al.(1997) angles ! and  

are, respectively, �� and � of Brumberg et al.(1996) and Brumberg (1997a)
whereas angle ' has the same meaning in these papers. The expression for
'K � ' given in Bretagnon et al.(1997) should be taken with the opposite sign.

4. K{D for Euler angles derivatives

To evaluate the di�erence in the values of the Earth's rotation parameters (ERP)
in dynamical and kinematical RS one should get along with '�'K ,  � K and

� � �K their derivatives _' � _'K , _ � _ K and _� � _�K . They may be computed
by means of formulas

_'� _'K = �
c�2

sin �

h
_F 1
C sin + _F 2

C cos + (� � �K) _ + ('� 'K) _� cos �
i
; (4:1)

_ � _ K = c�2 _F 3

C�
c�2

sin �

h
( _F 1

C sin +
_F 2

C cos ) cos�+(���K ) _ cos �+('�'K) _�
i
;

(4:2)
and

_� � _�K = c�2[ _F 1

C cos �
_F 2

C sin + ('� 'K) _ sin �]; (4:3)

using (3.1){(3.3) and SMART97 theory (Bretagnon et al., 1998) for the angles
 , � and their derivatives. The initial terms of the series for (4.1){(4.3) are given
in the Appendix.

5. Earth's rotation parameters

Representation (2.4) means splitting P (u) into matrix S of the diurnal rotation
and matrix N of the precession and nutation, i.e.

P (u) = SN ; S = D3('); N = D1(��)D3(� ) (4:1)

(ignoring for simplicity the motion of the Earth's poles). This splitting involves
the representation of the total Earth's rotation velocity !i (GRSC components
of the angular velocity of rotation of GRS+ with respect to GRSC) in two parts

!
i = !

i
N +Nji!

j
S ; (4:2)

with

!S =

0
@ 0
0
_'

1
A ; !N =

0
@�

_� cos 
_� sin 

� _ 

1
A : (4:3)
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By applying these relations to the D and K versions one gets

!
1
S � !

0
S =

0
@ 0

0
_'� _'K

1
A ; (4:4)

and

!
1
N � !

0
N =

0
B@
( �  K) _� sin � ( _� � _�K) cos 

( �  K) _� cos + ( _� � _�K) sin 

�( _ � _ K)

1
CA : (4:5)

Relation (4.4) characterizes the di�erence of the determination of the sidereal
time in dynamical and kinematical systems. Relation (4.5) gives the di�erence of
precession{nutation contributions in the Earth's angular velocity in dynamical
and kinematical systems. The initial terms of the series representing the two
�rst rows of matrix (4.5) are reproduced in the Appendix.

6. Conclusion

Using VSOP87 planetary theories and SMART97 Earth rotation theory we have
computed the relativistic kinematical di�erences in the Euler angles and their
TCG derivatives relating the ITRS and the geocentric ecliptical reference system
GRSC in dynamical and kinematical versions. For future observations at the
microarcsecond level it enables one to consider more rigorously the Earth's ro-
tation parameters in di�erent reference systems. For the present analysis it was
su�cient for us at the barycentric level to relate the ICRS with equatorial and
ecliptical reference systems just by means of simple matrices (2.2). The initial
terms of the series determined here are given in the Appendix. The complete
series are available by request to the second author.

In view of the present analysis it is interesting to consider the possibility
of checking geodesic precession directly by comparing ERP referred to DGRSC
and KGRSC. Geodesic precession has been tested only implicitly by analyzing
the lunar perigee motion with the aid of LLR and VLBI observations (Bertotti
et al., 1987).

Acknowledgments. The �rst author appreciates the support of the Rus-
sian Foundation of Fundamental Researches (Grant No. 99{02{16793).

References

Bertotti, B., Ciufolini, I., and Bender, P.L., 1987, Phys. Rev. Lett., 58, 1062.

Bretagnon, P. and Francou, G., 1988, Astron. Astrophys., 202, 309.

Bretagnon, P., Rocher, P., and Simon, J.-L., 1997, Astron. Astrophys., 319,
305.

Bretagnon, P., Francou, G., Rocher, P., and Simon, J.-L., 1998, Astron. Astro-
phys., 329, 329.

Brumberg, V.A., 1995, J. of Geodynamics, 20, 181.



Relativistic Corrections for ERPs 299

Brumberg, V.A., 1997a, in Dynamics and Astrometry of Natural and Arti�cial

Celestial Bodies (IAU Colloquium No. 165, Poznan, 1996, eds. I.M.
Wytrzyszczak, J.H. Lieske and R.A. Feldman), Kluwer, 439.

Brumberg, V.A., 1997b, Notes Sci. et Tech. du BDL, S057, Paris, 1.

Brumberg, V.A., Bretagnon, P., and Francou, G., 1992, Journ�ees 1991, ed. N.
Capitaine, Obs. de Paris, 141.

Brumberg, V.A., Bretagnon, P., and Guinot, B., 1996, Celest. Mech., 64, 231.

Klioner, S.A., 1997, in Dynamics and Astrometry of Natural and Arti�cial

Celestial Bodies (IAU Colloquium No. 165, Poznan, 1996, eds. I.M.
Wytrzyszczak, J.H. Lieske and R.A. Feldman), Kluwer, 383.

Klioner, S.A. and Voinov, A.V., 1993, Phys. Rev. D, 48, 1451.

Smart, W.M., 1953, Celestial Mechanics, Longmans, London

Tisserand, F., 1891, Trait�e de M�ecanique C�eleste, Gauthier-Villars, Paris, t. II

Appendix

We reproduce below the initial terms of the series for '� 'K ,  �  K, � � �K ,

_'� _'K , _ � _ K , _�� _�K and �rst two rows of matrix (4.5). The time t is measured
in Julian years from J2000. These series involve 12 angular variables, i.e. 8 mean
planetary longitudes with respect to the �xed equinox J2000 �i (1 � i � 8), the
Delaunay arguments D, F , l of the Moon and the mean angle of rotation of
the Earth �'. These arguments expressed in radians are represented by linear
functions of time as follows:

�1 = 4:40260867435+ 26087:9031415742t ;

�2 = 3:17614652884+ 10213:2855462110t ;

�3 = 1:75347029148+ 6283:0758511455t ;

�4 = 6:20347594486+ 3340:6124266998t ;

�5 = 0:59954632934+ 529:6909650946t ;

�6 = 0:87401658845+ 213:2990954380t ;

�7 = 5:48129370354+ 74:7815985673t ;

�8 = 5:31188611871+ 38:1330356378t ;

D = 5:19846640063+ 77713:7714481804t ;

F = 1:62790513602+ 84334:6615717837t ;

l = 2:35555563875+ 83286:9142477147t ;

�' = 4:89496121282+ 2301216:7536515365t :

These values are slightly di�erent from those given in (Bretagnon et al., 1998).
The following three series representing the di�erences '� 'K ,  �  K, � � �K
are reproduced here with some more terms as compared with (Bretagnon et al.,
1997), their coe�cients being expressed in �as:

' � 'K = �2:99t� 54771:03t2� 802:06t3 +

+ 3:28 sin(�3 +D � F ) � 0:24 sin(2�5 � 5�6)� 0:36 cos(2�5 � 5�6) +

+ 0:07 sin(8�2 � 13�3)� 0:04 cos(8�2� 13�3) + 0:02 sin(3�2 � 5�3) +
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+ 0:07 cos(3�2 � 5�3)� 0:05 sin(�3 + F ) � 0:04 sin(�3 � F ) +

+ 0:03 cos2�5 + 0:02 cos2�6 + 0:02 cos�5 � 0:01 cos(�3 + �5) +

+ t[0:20 sin�3 + 0:85 cos�3 + 0:80 cos(�3 +D � F ) � 0:14 sin(2�5 � 5�6) +

+ 0:05 cos(2�5 � 5�6)� 0:02 sin(8�2 � 13�3)� 0:02 cos(8�2 � 13�3) +

+ 0:02 sin(3�2 � 5�3)� 0:01 cos(�3 + F )] +

+ t
2[�0:51 sin(�3 +D � F ) � 5:64 cos(�3 +D � F ) + 0:03 sin 2�3 + 0:34 cos2�3 +

+ 0:05 sin�3 � 0:02 cos�3 + 0:06 cos(2�3+ 2D)� 0:06 cos(2�3 + 2D � 2F ) +

+ 0:02 cos(2�5 � 5�6) + 0:01 sin 3�3 � 0:01 cos(�3 +D + F )] +

+ t3[2:37 sin(�3 +D � F )� 0:20 cos(�3 +D � F )� 0:24 sin2�3 + 0:02 cos2�3 �

� 0:04 sin(2�3 + 2D) + 0:04 sin(2�3+ 2D� 2F )� 0:02 cos�3] + : : : ; (A.1)

 �  K = 19198827:44t� 50386:32t2� 754:09t3 �

� 34:28 sin�3 � 149:22 cos�3 + 3:01 sin(�3 +D � F )� 1:73 sin 2�3 +

+ 0:84 cos2�3 � 0:26 sin(2�5 � 5�6)� 0:33 cos(2�5 � 5�6)� 0:37 sinD �

� 0:05 sin(4�3 � 8�4 + 3�5) + 0:17 cos(4�3 � 8�4 + 3�5) + 0:21 sin(�3 � �5)�

� 0:13 sin(2�2 � 2�3) + 0:09 sin(�2 � �3) + 0:09 sin(8�2� 13�3) +

+ t[�7:36 sin�3 + 6:47 cos�3 + 0:73 cos(�3 +D � F ) + 0:19 sin 2�3 +

+ 0:15 cos2�3 � 0:13 sin(2�5 � 5�6) + 0:04 cos(2�5 � 5�6)�

� 0:02 sin(8�2 � 13�3)� 0:03 cos(8�2 � 13�3) + 0:02 sin(3�2 � 5�3)�

� 0:02 sin(4�3 � 8�4 + 3�5)� 0:01 cos(�3 + F )] +

+ t
2[�0:47 sin(�3 +D � F )� 6:15 cos(�3 +D � F ) + 0:30 sin�3 + 0:29 cos�3 +

+ 0:04 sin2�3 + 0:35 cos2�3 + 0:06 cos(2�3 + 2D)� 0:06 cos(2�3 + 2D � 2F ) +

+ 0:01 cos(2�5 � 5�6) + 0:01 sin 3�3 � 0:01 cos(�3 +D + F )] +

+ t3[2:41 sin(�3 +D � F ) � 0:20 cos(�3 +D � F ) � 0:25 sin 2�3 + 0:02 cos2�3 �

� 0:04 sin(2�3 + 2D) + 0:04 sin(2�3 + 2D � 2F )� 0:03 cos�3] + : : : ; (A.2)

� � �K = 9:55t+ 1954:11t2� 4721:80t3�

� 1:30 cos(�3 +D � F ) + 0:17 sin(2�5 � 5�6)� 0:09 cos(2�5� 5�6) +

+ 0:02 sin(8�2 � 13�3) + 0:03 cos(8�2� 13�3)� 0:03 sin(3�2 � 5�3) +

+ 0:02 cos(�3 + F ) + 0:02 cos(�3 � F ) + 0:01 sin 2�5 +

+ t[0:32 sin(�3 +D � F )� 0:03 sin(2�5 � 5�6)� 0:04 cos(2�5� 5�6)�

� 0:03 cos�3] +

+ t2[�1:82 sin(�3 +D � F ) + 0:04 cos(�3 +D � F ) + 0:14 sin 2�3 + 0:02 sin�3 +

+ 0:08 cos�3 + 0:02 sin(2�3 + 2D)� 0:02 sin(2�3 + 2D � 2F )] +

+ t3[�0:04 sin(�3 +D � F ) � 0:45 cos(�3 +D � F ) + 0:07 cos2�3 +

+ 0:01 cos(2�3 + 2D)� 0:01 cos(2�3+ 2D� 2F )] + : : : : (A.3)

The derivatives _' � _'K , _ � _ K , _� � _�K could be obtained by di�erentiating
(A.1){(A.3). But we give below their expressions resulting directly from (4.1){
(4.3). Di�erentiation of (A.1){(A.3) was used only for checking purposes. The
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series for the di�erences _'� _'K , _ � _ K , _�� _�K multiplied by 106 are as follows:

106( _' � _'K) = �0:53t� 0:01t2 + 0:03t3 �

� 0:02 cos(�3 + F ) + 0:01 cos(�3 � F )�

� 0:03t sin�3 �

� t2[0:05 sin(2�3 + 2D) + 0:02 sin 2�3]�

� t3[0:03 cos(2�3 + 2D) + 0:01 cos2�3] +

+ 0:01t4 sin(2�3 + 2D) + : : : ; (A.4)

106( _ � _ K) = 93:08� 0:49t� 0:01t2 + 0:02t3 +

+ 4:55 sin�3 � 1:04 cos�3 � 0:05 sin 2�3 � 0:11 cos2�3 � 0:14 cosD �

� 0:02 cos(�3 + F )� 0:02 cos(D + l) + 0:01 cos(�3 � F ) +

+ t[�0:20 sin�3 � 0:22 cos�3 + 0:01 cos2�3] +

+ t2[�0:05 sin(2�3+ 2D)� 0:02 sin2�3 + 0:01 sin(�3 +D+ F )�

� 0:01 sin(2�3 + 2D+ l)� 0:01 sin(�3 +D � F )]�

� t
3[0:03 cos(2�3 + 2D) + 0:02 cos2�3] +

+ 0:01t4 sin(2�3+ 2D) + : : : ; (A.5)

106( _� � _�K) = 0:02t� 0:07t2 + 0:02t2 cos(2�3 + 2D) + : : : : (A.6)

Finally, we reproduce the series representing the �rst two rows of matrix (4.5)
multiplied by 106:

106(!
1

1

N � !
0

1

N ) = �0:02t+ 0:07t2 +

+t2[�1:76 sin(2�3+ 2D)� 0:02 cos(2�3 + 2D)� 0:77 sin 2�3 +

+0:36 sin(�3 +D + F ) � 0:35 sin(2�3 + 2D+ l)� 0:34 sin(�3 +D � F ) +

+0:07 sin(�3 +D + F + l)� 0:07 sin(2�3 + 4D� l)� 0:06 sin(2�3+ 4D) +

+0:04 cos3�3 � 0:05 sin(2�3 + 2D + 2l) + 0:05 sin(2�3 + 2D � l)�

�0:03 sin(�3 +D � F + l)� 0:03 sin(�3 +D � F � l)� 0:01 sin(2�3 + 4D+ l) +

+0:01 sin(�3 + 3D + F � l) + 0:01 sin(2�3 + l) + 0:01 sin(�3 + 3D+ F )] +

+t3[0:03 sin(2�3 + 2D)� 0:86 cos(2�3+ 2D) + 0:01 sin2�3 � 0:37 cos2�3 �

�0:17 cos(2�3+ 2D + l) + 0:09 cos(�3 +D + F )� 0:08 cos(�3 +D � F )�

�0:03 cos(2�3+ 4D � l)� 0:03 cos(2�3 + 4D)� 0:02 cos(2�3 + 2D + 2l) +

+0:02 cos(2�3+ 2D � l)� 0:02 sin3�3 + 0:02 cos(�3 +D + F + l)] +

+t4[0:23 sin(2�3 + 2D) + 0:02 cos(2�3+ 2D) + 0:10 sin2�3 +

+0:05 sin(2�3+ 2D+ l)� 0:01 sin(�3 +D + F ) + 0:01 sin(�3 +D � F )] +

+t5[0:04 cos(2�3 + 2D) + 0:02 cos2�3] + : : : ; (A.6)
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N � !
0

2

N ) = �0:03t
3 +

+t[�7:20 sin(2�3 + 2D)� 3:14 sin(2�3) + 1:47 sin(�3 +D + F ) �

�1:43 sin(2�3+ 2D+ l)� 1:41 sin(�3 +D � F ) + 0:29 sin(�3 +D + F + l)�

�0:27 sin(2�3+ 4D� l)� 0:24 sin(2�3 + 4D) + 0:04 sin 3�3 + 0:18 cos3�3 �

�0:20 sin(2�3+ 2D+ 2l) + 0:20 sin(2�3+ 2D� l)� 0:12 sin(�3 +D � F + l)�

�0:11 sin(�3 +D � F � l)� 0:06 sin(2�3 + 4D+ l) + 0:06 sin(�3 + 3D + F � l) +

+0:05 sin(2�3+ l) + 0:05 sin(�3 + 3D + F ) + 0:03 sin 2 �'� 0:02 cos2 �'+

+0:04 sin(�3 +D + F + 2l)� 0:04 sin(�3 +D + F � l)] +

+t2[0:06 sin(2�3 + 2D)� 3:51 cos(2�3+ 2D) + 0:02 sin2�3 � 1:53 cos2�3 +

+0:01 sin(2�3+ 2D+ l)� 0:70 cos(2�3 + 2D + l) + 0:36 cos(�3 +D + F )�

�0:34 cos(�3 +D � F )� 0:13 cos(2�3+ 4D� l)� 0:12 cos(2�3 + 4D)�

�0:10 cos(2�3+ 2D + 2l) + 0:10 cos(2�3+ 2D � l)� 0:08 sin3�3 + 0:01 cos3�3 +

+0:07 cos(�3 +D + F + l)� 0:03 cos(2�3+ 4D+ l)� 0:03 cos(�3 +D � F + l)�

�0:03 cos(�3 +D � F � l) + 0:03 cos(2�3+ l)� 0:01 sin�3 + 0:01 sin(�3 + 2D)�

�0:01 cos(2�3+ 2D � 2F ) + 0:01 cos(�3 + 3D + F � l)] +

+t3[1:07 sin(2�3 + 2D) + 0:08 cos(2�3+ 2D) + 0:47 sin2�3 + 0:01 cos2�3 +

+0:21 sin(2�3+ 2D+ l)� 0:09 sin(�3 +D + F )� 0:02 cos(�3 +D + F ) +

+0:08 sin(�3 +D � F ) + 0:04 sin(2�3 + 4D� l) + 0:04 sin(2�3+ 4D)�

�0:03 sin(2�3+ 2D� l) + 0:03 sin(2�3 + 2D + 2l)� 0:02 cos3�3 �

�0:02 sin(�3 +D + F + l)] +

+t4[�0:04 sin(2�3+ 2D) + 0:24 cos(2�3 + 2D) + 0:11 cos2�3 +

+0:05 cos(2�3+ 2D + l)� 0:01 cos(�3 +D + F ) + 0:01 cos(�3 +D � F )]�

�t5[0:04 sin(2�3 + 2D) + 0:01 cos(2�3+ 2D) + 0:02 sin2�3] + : : : : (A.7)

The coe�cients of the series (A.4){(A.8) are expressed in radians.


